Начните вводить часть условия (например, могут ли, чему равен или найти):
Глава V. Четырехугольники. §1. Многоугольники
- 363 Начертите выпуклые пятиугольник и шестиугольник. В каждом многоугольнике из какой-нибудь вершины проведите все диагонали. На сколько треугольников разделяют проведенные диагонали каждый многоугольник?
- 364 Найдите сумму углов выпуклого: а) пятиугольника; б) шестиугольника; в) десятиугольника.
- 365 Сколько сторон имеет выпуклый многоугольник, каждый угол которого равен: а) 90°; б) 60°; в) 120°; г) 108°?
- 366 Найдите стороны четырехугольника, если его периметр равен 8 см, а одна сторона больше каждой из других сторон соответственно на 3 мм, 4 мм и 5 мм.
- 367 Найдите стороны четырехугольника, если его периметр равен 66 см, первая сторона больше второй на 8 см и на столько же меньше третьей стороны, а четвертая — в три раза больше второй.
- 368 Найдите углы выпуклого четырехугольника, если они равны друг другу.
- 369 Найдите углы А, B и С выпуклого четырехугольника АВСD, если ∠A=∠B=∠C, a ∠D=135°.
- 370 Найдите углы выпуклого четырехугольника, если они пропорциональны числам 1, 2, 4, 5.
Глава V. Четырехугольники. §2. Параллелограмм и трапеция
- 371 Докажите, что выпуклый четырехугольник ABCD является параллелограммом, если: a) ∠BAC=∠ACD и ∠BCA=∠DAC; б)AB||CD, ∠A=∠C.
- 372 Периметр параллелограмма равен 48 см. Найдите стороны параллелограмма, если: а) одна сторона на 3 см больше другой; б) разность двух сторон равна 7 см; в) одна из сторон в два раза больше другой.
- 373 Периметр параллелограмма ABCD равен 50 см, ∠C = 30°, а перпендикуляр ВН к прямой CD равен 6,5 см. Найдите стороны параллелограмма.
- 374 Биссектриса угла А параллелограмма ABCD пересекает сторону ВС в точке К. Найдите периметр этого параллелограмма, если ВК= 15 см, КС=9 см.
- 375 Найдите периметр параллелограмма, если биссектриса одного из его углов делит сторону параллелограмма на отрезки 7 см и 14 см.
- 376 Найдите углы параллелограмма ABCD, если: a) ∠A = 84°; 6)∠A-∠B = 55°; в) ∠A + ∠C= 142°; г) ∠A = 2∠B; д) ∠CAD=16°, ∠ACD = 37°.
- 377 В параллелограмме MNPQ проведен перпендикуляр NH к прямой MQ, причем точка Н лежит на стороне MQ. Найдите стороны и углы параллелограмма, если известно, что МН=3см, HQ = 5 см, ∠MNH=30°.
- 378 Докажите, что параллелограмм является выпуклым четырехугольником.
- 379 Из вершин В и D параллелограмма ABCD, у которого АВ ≠ ВС и угол А острый, проведены перпендикуляры ВК и DM к прямой АС. Докажите, что четырехугольник BMDK — параллелограмм.
- 380 На сторонах АВ, ВС, CD и DA четырехугольника ABCD отмечены соответственно точки М, N, Р и Q так, что АМ=СР, BN=DQ, BM=DP, NC=QA. Докажите, что ABCD и MNPQ — параллелограммы.
- 381 На рисунке 163 изображены два одинаковых колеса тепловоза. Радиусы О1А и O2В равны. Стержень АВ, длина которого равна расстоянию O1O2 между центрами колес, передает движение от одного колеса к другому. Докажите, что отрезки АВ и O1O2 либо параллельны,
- 382 Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что четырехугольник вершинами которого являются середины отрезков ОА, ОВ, ОС и OD, — параллелограмм.
- 383 На диагонали BD параллелограмма ABCD отмечены две точки Р и Q так, что PB=QD. Докажите, что четырехугольник APCQ — параллелограмм.
- 384 Через середину М стороны АВ треугольника ABC проведена прямая, параллельная стороне ВС. Эта прямая пересекает сторону АС в точке N. Докажите, что AN=NC.
- 385 Докажите теорему Фалеса1: если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
- 386 Докажите, что отрезок, соединяющий середины боковых сторон трапеции, параллелен основаниям трапеции.
- 387 Найдите углы В и D трапеции ABCD с основаниями AD и ВС, если ∠A=36°, ∠C= 117°.
- 388 Докажите, что в равнобедренной трапеции: а) углы при каждом основании равны; б) диагонали равны.
- 389 Докажите, что трапеция равнобедренная, если: а) углы при основании равны; б) диагонали трапеции равны.
- 390 Один из углов равнобедренной трапеции равен 68°. Найдите остальные углы трапеции.
- 391 Докажите, что из одинаковых плиток, имеющих форму равнобедренной трапеции, можно сделать паркет, полностью покрывающий любую часть плоскости.
- 392 Основания прямоугольной трапеции равны а и b, один из углов равен а. Найдите: а) большую боковую сторону трапеции, если a=4 см, b = 7см, α=60°; б) меньшую боковую сторону трапеции, если a=10 см, b=15см, α=45°.
- 393 Постройте параллелограмм: а) по двум смежным сторонам и углу между ними; б) по двум диагоналям и углу между ними; в) по двум смежным сторонам и соединяющей их концы диагонали.
- 394 Даны три точки А, В и С, не лежащие на одной прямой. Постройте параллелограмм так, чтобы три его вершины совпадали с данными точками. Сколько таких параллелограммов можно построить?
- 395 Даны острый угол hk и два отрезка P1Q1 и P2Q2. Постройте параллелограмм ABCD так, чтобы расстояние между параллельными прямыми АВ и DC равнялось P1Q1, AB=P2Q2 и ∠A=∠hk.
- 396 Разделите данный отрезок АВ на п равных частей. Решение
- 397 Постройте равнобедренную трапецию ABCD: а) по основанию AD, углу А и боковой стороне АВ; б) по основанию ВС, боковой стороне АВ и диагонали BD.
- 398 Постройте прямоугольную трапецию ABCD по основаниям и боковой стороне AD, перпендикулярной к основаниям.
Глава V. Четырехугольники. §3. Прямоугольник, ромб, квадрат
- 399 Докажите, что параллелограмм, один из углов которого прямой, является прямоугольником.
- 400 Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.
- 401 Найдите периметр прямоугольника ABCD, если биссектриса угла А делит сторону: а) ВС на отрезки 45,6 см и 7,85 см; б) DC на отрезки 2,7 дм и 4,5 дм.
- 402 Диагонали прямоугольника ABCD пересекаются в точке О. Докажите, что треугольники AOD и АОВ равнобедренные.
- 403 В прямоугольнике ABCD диагонали пересекаются в точке О. Найдите периметр треугольника АОВ, если ∠CAD=30°, АС= 12 см.
- 404 Докажите, что медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы.
- 405 В ромбе одна из диагоналей равна стороне. Найдите: а) углы ромба; б) углы, которые диагонали ромба образуют с его сторонами.
- 406 Найдите периметр ромба ABCD, в котором ∠B=60°, АС = 10,5 см.
- 407 Найдите углы, которые образуют диагонали ромба с его сторонами, если один из углов ромба равен 45°.
- 408 Докажите, что параллелограмм является ромбом, если: а) его диагонали взаимно перпендикулярны; б) диагональ является биссектрисой его угла.
- 409 Докажите, что ромб, у которого один угол прямой, является квадратом.
- 410 Является ли четырехугольник квадратом, если его диагонали: а) равны и взаимно перпендикулярны; б) взаимно перпендикулярны и имеют общую середину; в) равны, взаимно перпендикулярны и имеют общую середину?
- 411 В прямоугольном треугольнике проведена биссектриса прямого угла. Через точку пересечения этой биссектрисы с гипотенузой проведены прямые, параллельные катетам. Докажите, что полученный четырехугольник — квадрат.
- 412 Даны равнобедренный прямоугольный треугольник ABC с прямым углом С, катетом АС = 12 см и квадрат CDEF, такой, что две его стороны лежат на катетах, а вершина Е — на гипотенузе треугольника. Найдите периметр квадрата.
- 413 Постройте прямоугольник: а) по двум смежным сторонам; б) по стороне и диагонали; в) по диагонали и углу между диагоналями.
- 414 Постройте ромб: а) по двум диагоналям; б) по стороне и углу.
- 415 Постройте квадрат: а) по стороне; б) по диагонали.
- 416 Даны две точки А и В, симметричные относительно некоторой прямой, и точка М. Постройте точку, симметричную точке М относительно той же прямой.
- 417 Сколько осей симметрии имеет: а) отрезок; б) прямая; в) луч?
- 418 Какие из следующих букв имеют ось симметрии: А, Б, Г, Е, О, F?
- 419 Докажите, что прямая, проходящая через середины противоположных сторон прямоугольника, является его осью симметрии.
- 420 Докажите, что прямая, содержащая биссектрису равнобедренного треугольника, проведенную к основанию, является осью симметрии треугольника.
- 421 Даны точки А, В и М. Постройте точку, симметричную точке М относительно середины отрезка АВ.
- 422 Имеют ли центр симметрии: а) отрезок; б) луч; в) пара пересекающихся прямых; г) квадрат?
- 423 Какие из следующих букв имеют центр симметрии: А, О, М, X, К?
Глава V. Четырехугольники. Дополнительные задачи
- 424 Докажите, что если не все углы выпуклого четырехугольника равны друг другу, то хотя бы один из них тупой.
- 425 Периметр параллелограмма ABCD равен 46 см, АВ=14см. Какую сторону параллелограмма пересекает биссектриса угла А? Найдите отрезки, которые образуются при этом пересечении.
- 426 Стороны параллелограмма равны 10 см и 3 см. Биссектрисы двух углов, прилежащих к большей стороне, делят противоположную сторону на три отрезка. Найдите эти отрезки.
- 427 Через произвольную точку основания равнобедренного треугольника проведены прямые, параллельные боковым сторонам треугольника. Докажите, что периметр получившегося четырехугольника равен сумме боковых сторон данного треугольника.
- 428 В параллелограмме, смежные стороны которого не равны, проведены биссектрисы углов. Докажите, что при их пересечении образуется прямоугольник.
- 429 Докажите, что выпуклый четырехугольник является параллелограммом, если сумма углов, прилежащих к каждой из двух смежных сторон, равна 180°.
- 430 Докажите, что выпуклый четырехугольник является параллелограммом, если его противоположные углы попарно равны.
- 431 Точка К— середина медианы AM треугольника ABC. Прямая ВК пересекает сторону АС в точке D. Докажите, что AD= ⅓ АС.
- 432 Точки М и N — середины сторон AD и ВС параллелограмма ABCD. Докажите, что прямые AN и МС делят диагональ BD на три равные части.
- 433 Из вершины В ромба ABCD проведены перпендикуляры ВК и ВМ к прямым AD и DC. Докажите, что луч BD является биссектрисой угла КВМ.
- 434 Докажите, что точка пересечения диагоналей ромба равноудалена от его сторон.
- 435 Докажите, что середина отрезка, соединяющего вершину треугольника с любой точкой противоположной стороны, лежит на отрезке с концами в серединах двух других сторон.
- 436 Диагональ АС квадрата ABCD равна 18,4 см. Прямая, проходящая через точку А и перпендикулярная к прямой АС, пересекает прямые ВС и CD соответственно в точках М и N. Найдите MN.
- 437 На диагонали АС квадрата ABCD взята точка М так, что AM =АВ. Через точку М проведена прямая, перпендикулярная к прямой АС и пересекающая ВС в точке Н. Докажите, что ВН=НМ=МС.
- 438 В трапеции ABCD с большим основанием AD диагональ АС перпендикулярна к боковой стороне CD, ∠BAC = ∠CAD. Найдите AD, если периметр трапеции равен 20 см, a ∠D=60°.
- 439* Сумма углов при одном из оснований трапеции равна 90°. Докажите, что отрезок, соединяющий середины оснований трапеции, равен их полуразности.
- 440* На двух сторонах треугольника вне его построены квадраты. Докажите, что отрезок, соединяющий концы сторон квадратов, выходящих из одной вершины треугольника, в два раза больше медианы треугольника, выходящей из той же вершины.
- 441 Докажите, что прямые, содержащие диагонали ромба, являются его осями симметрии.
- 442 Докажите, что точка пересечения диагоналей параллелограмма является его центром симметрии.
- 443 Сколько центров симметрии имеет пара параллельных прямых?
- 444* Докажите, что если фигура имеет две взаимно перпендикулярные оси симметрии, то точка их пересечения является центром симметрии фигуры.
Глава VI. Площадь. §1. Площадь многоугольника
- 445 Вырежьте из бумаги два равных прямоугольных треугольника и составьте из них: а) равнобедренный треугольник; б) прямоугольник; в) параллелограмм, отличный от прямоугольника. Сравните площади полученных фигур.
- 446 Начертите квадрат и примите его за единицу измерения площадей. Далее начертите: а) квадрат, площадь которого выражается числом 4; б) прямоугольник, отличный от квадрата, площадь которого выражается числом 4; в) треугольник, площадь которого выражается
- 447 Начертите параллелограмм ABCD и отметьте точку М, симметричную точке D относительно точки С. Докажите, что SABCD= SAMD.
- 448 На стороне AD прямоугольника ABCD построен треугольник ADE так, что его стороны АЕ и DE пересекают отрезок ВС в точках M и N, причем точка М — середина отрезка АЕ. Докажите, что SABCD = SADE.
- 449 Найдите площадь квадрата, если его сторона равна: а) 1,2 см; б) ¾ дм; в) 3√2 м.
- 450 Найдите сторону квадрата, если его площадь равна: а) 16 см2; б) 2,25 дм2; в) 12 м2.
- 451 Площадь квадрата равна 24 см2. Выразите площадь этого квадрата: а) в квадратных миллиметрах; б) в квадратных дециметрах.
- 452 Пусть a и b — смежные стороны прямоугольника, а S — его площадь. Вычислите:
- 453 Как изменится площадь прямоугольника, если: а) одну пару противоположных сторон увеличить в два раза; б) каждую сторону увеличить в два раза; в) одну пару противоположных сторон увеличить в два раза, а другую — уменьшить в два раза?
- 454 Найдите стороны прямоугольника, если: а) его площадь равна 250 см2, а одна сторона в 2,5 раза больше другой; б) его площадь равна 9 м2, а периметр равен 12 м.
- 455 Пол комнаты, имеющий форму прямоугольника со сторонами 5,5 м и 6 м, нужно покрыть паркетом прямоугольной формы. Длина каждой дощечки паркета равна 30 см, а ширина — 5 см. Сколько потребуется таких дощечек для покрытия пола?
- 456 Сколько потребуется кафельных плиток квадратной формы со стороной 15 см, чтобы облицевать ими стену, имеющую форму прямоугольника со сторонами 3 м и 2,7 м?
- 457 Найдите сторону квадрата, площадь которого равна площади прямоугольника со смежными сторонами 8 м и 18 м.
- 458 Два участка земли огорожены заборами одинаковой длины. Первый участок имеет форму прямоугольника со сторонами 220 м и 160 м, а второй имеет форму квадрата. Площадь какого участка больше и на сколько?
Глава VI. Площадь. §2. Площади параллелограмма, треугольника и трапеции
- 459 Пусть а — основание, h — высота, a S — площадь параллелограмма. Найдите: a) S, если а=15см, h=12см; б) а, если S = 34 см2, h=8,5см; в) а, если S = 162cm2, h=½а; г) h, если h = 3а, S= 27.
- 460 Диагональ параллелограмма, равная 13 см, перпендикулярна к стороне параллелограмма, равной 12 см. Найдите площадь параллелограмма.
- 461 Смежные стороны параллелограмма равны 12 см и 14 см, а его острый угол равен 30°. Найдите площадь параллелограмма.
- 462 Сторона ромба равна 6 см, а один из углов равен 150°. Найдите площадь ромба.
- 463 Сторона параллелограмма равна 8,1 см, а диагональ, равная 14 см, образует с ней угол в 30°. Найдите площадь параллелограмма.
- 464 Пусть а и b — смежные стороны параллелограмма, S — площадь, а h1 и h2 — его высоты. Найдите:
- 465 Острый угол параллелограмма равен 30°, а высоты, проведенные из вершины тупого угла, равны 2 см и 3 см. Найдите площадь параллелограмма.
- 466 Диагональ параллелограмма равна его стороне. Найдите площадь параллелограмма, если большая его сторона равна 15,2 см, а один из его углов 45°.
- 467 Квадрат и ромб, не являющийся квадратом, имеют одинаковые периметры. Сравните площади этих фигур.
- 468 Пусть а — основание, h — высота, a S — площадь треугольника. Найдите:
- 469 Стороны АВ и ВС треугольника ABC равны соответственно 16 см и 22 см, а высота, проведенная к стороне АВ, равна 11 см. Найдите высоту, проведенную к стороне ВС.
- 470 Две стороны треугольника равны 7,5 см и 3,2 см. Высота, проведенная к большей стороне, равна 2,4 см. Найдите высоту, проведенную к меньшей из данных сторон.
- 471 Найдите площадь прямоугольного треугольника, если его катеты равны: а) 4 см и 11см; б) 1,2 дм и 3 дм.
- 472 Площадь прямоугольного треугольника равна 168 см2. Найдите его катеты, если отношение их длин равно 7/12.
- 473 Через вершину С треугольника ABC проведена прямая m, параллельная стороне АВ. Докажите, что все треугольники с вершинами на прямой m и основанием АВ имеют равные площади.
- 474 Сравните площади двух треугольников, на которые разделяется данный треугольник его медианой.
- 475 Начертите треугольник ABC. Через вершину А проведите две прямые так, чтобы они разделили этот треугольник на три треугольника, имеющие равные площади.
- 476 Докажите, что площадь ромба равна половине произведения его диагоналей. Вычислите площадь ромба, если его диагонали равны: а) 3,2 дм и 14 см; б) 4,6 дм и 2 дм.
- 477 Найдите диагонали ромба, если одна из них в 1,5 раза больше другой, а площадь ромба равна 27 см2.
- 478 В выпуклом четырехугольнике диагонали взаимно перпендикулярны. Докажите, что площадь четырехугольника равна половине произведения его диагоналей.
- 479 Точки D и Е лежат на сторонах АВ и АС треугольника ABC. Найдите:
- 480 Найдите площадь трапеции ABCD с основаниями АВ и CD, если:
- 481 Найдите площадь прямоугольной трапеции, у которой две меньшие стороны равны 6 см, а больший угол равен 135°.
- 482 Тупой угол равнобедренной трапеции равен 135°, а высота, проведенная из вершины этого угла, делит большее основание на отрезки 1,4 см и 3,4 см. Найдите площадь трапеции.
Глава VI. Площадь. §3. Теорема Пифагора
- 483 Найдите гипотенузу прямоугольного треугольника по данным катетам a и b:
- 484 В прямоугольном треугольнике а и b — катеты, с — гипотенуза. Найдите b, если:
- 485 Найдите катет прямоугольного треугольника, лежащий против угла 60°, если гипотенуза равна с.
- 486 В прямоугольнике ABCD найдите:
- 487 Боковая сторона равнобедренного треугольника равна 17 см, а основание равно 16 см. Найдите высоту, проведенную к основанию.
- 488 Найдите: а) высоту равностороннего треугольника, если его сторона равна 6 см; б) сторону равностороннего треугольника, если его высота равна 4 см.
- 489 Докажите, что площадь равностороннего треугольника вычисляется по формуле, где а — сторона треугольника. Найдите площадь равностороннего треугольника, если его сторона равна: а) 5 см; б) 1,2 см; в) 2√2 дм.
- 490 Найдите боковую сторону и площадь равнобедренного треугольника, если: а) основание равно 12 см, а высота, проведенная к основанию, равна 8 см; б) основание равно 8 см, а угол, противолежащий основанию, равен 120°; в) треугольник прямоугольный и высот
- 491 По данным катетам a и b прямоугольного треугольника найдите высоту, проведенную к гипотенузе: а) а=5, b = 12; б)а=12, b=16.
- 492 Найдите высоты треугольника со сторонами 10 см, 10 см и 12 см.
- 493 Найдите сторону и площадь ромба, если его диагонали равны 10 см и 24 см.
- 494 Найдите диагональ и площадь ромба, если его сторона равна 10 см, а другая диагональ — 12 см.
- 495 Найдите площадь трапеции ABCD с основаниями АВ и CD, если:
- 496 Основание D высоты CD треугольника ABC лежит на стороне АВ, причем AD=BC. Найдите АС, если АВ=3, a CD = √3 .
- 497 Одна из диагоналей параллелограмма является его высотой. Найдите эту диагональ, если периметр параллелограмма равен 50 см, а разность смежных сторон равна 1 см.
- 498 Выясните, является ли треугольник прямоугольным, если его стороны выражаются числами: а) 6, 8, 10; б) 5, 6, 7; в) 9, 12, 15; г) 10, 24, 26; д) 3, 4, 6; е) 11, 9, 13; ж) 15, 20, 25. В каждом случае ответ обоснуйте.
- 499 Найдите меньшую высоту треугольника со сторонами, равными: а) 24 см, 25 см, 7 см; б) 15 см, 17 см, 8 см.
Глава VI. Площадь. Дополнительные задачи
- 500 Докажите, что площадь квадрата, построенного на катете равнобедренного прямоугольного треугольника, вдвое больше площади квадрата, построенного на высоте, проведенной к гипотенузе.
- 501 Площадь земельного участка равна 27 га. Выразите площадь этого же участка: а) в квадратных метрах; б) в квадратных километрах.
- 502 Высоты параллелограмма равны 5 см и 4 см, а периметр равен 42 см. Найдите площадь параллелограмма.
- 503 Найдите периметр параллелограмма, если его площадь равна 24 см2, а точка пересечения диагоналей удалена от сторон на 2 см и 3 см.
- 504 Меньшая сторона параллелограмма равна 29 см. Перпендикуляр, проведенный из точки пересечения диагоналей к большей стороне, делит ее на отрезки, равные 33 см и 12 см. Найдите площадь параллелограмма.
- 505 Докажите, что из всех треугольников, у которых одна сторона равна a, а другая — b, наибольшую площадь имеет тот, у которого эти стороны перпендикулярны.
- 506 Как провести две прямые через вершину квадрата, чтобы разделить его на три фигуры, площади которых равны?
- 507* Каждая сторона одного треугольника больше любой стороны другого треугольника. Следует ли из этого, что площадь первого треугольника больше площади второго треугольника?
- 508* Докажите, что сумма расстояний от точки на основании равнобедренного треугольника до боковых сторон не зависит от положения этой точки.
- 509 Докажите, что сумма расстояний от точки, лежащей внутри равностороннего треугольника, до его сторон не зависит от положения этой точки.
- 510* Через точку D, лежащую на стороне ВС треугольника ABC, проведены прямые, параллельные двум другим сторонам и пересекающие стороны АВ и АС соответственно в точках Е и F. Докажите, что треугольники CDE и BDF имеют равные площади.
- 511 В трапеции ABCD с боковыми сторонами АВ и CD диагонали пересекаются в точке О. а) Сравните площади треугольников ABD и ACD. б) Сравните площади треугольников АВО и СDO. в) Докажите, что выполняется равенство ОА • ОВ = ОС • OD.
- 512* Основания трапеции равны а и b. Отрезок с концами на боковых сторонах трапеции, параллельный основаниям, разделяет трапецию на две трапеции, площади которых равны. Найдите длину этого отрезка.
- 513 Диагонали ромба равны 18 м и 24 м. Найдите периметр ромба и расстояние между параллельными сторонами.
- 514 Площадь ромба равна 540 см2, а одна из его диагоналей равна 4,5 дм. Найдите расстояние от точки пересечения диагоналей до стороны ромба.
- 515 Найдите площадь равнобедренного треугольника, если: а) боковая сторона равна 20 см, а угол при основании равен 30°; б) высота, проведенная к боковой стороне, равна 6 см и образует с основанием угол в 45°.
- 516 В треугольнике ABC ВС = 34 см. Перпендикуляр MN, проведенный из середины ВС к прямой АС, делит сторону АС на отрезки AN= 25 см и NC= 15 см. Найдите площадь треугольника ABC.
- 517 Найдите площадь четырехугольника ABCD, в котором АВ = 5 см, ВС = 13 см, CD = 9 см, DA =15 см, АС = 12 см.
- 518 Найдите площадь равнобедренной трапеции, если: а) ее меньшее основание равно 18 см, высота — 9 см и острый угол равен 45°; б) ее основания равны 16 см и 30 см, а диагонали взаимно перпендикулярны.
- 519 Найдите площадь равнобедренной трапеции, у которой высота равна h, а диагонали взаимно перпендикулярны.
- 520 Диагонали равнобедренной трапеции взаимно перпендикулярны, а сумма ее оснований равна 2а. Найдите площадь трапеции.
- 521 Докажите, что если диагонали четырехугольника ABCD взаимно перпендикулярны, то AD2 +ВС2 =AB2+CD2.
- 522 В равнобедренной трапеции ABCD с основаниями AD=17 см, ВС=5 см и боковой стороной АВ=10 см через вершину В проведена прямая, делящая диагональ АС пополам и пересекающая основание AD в точке М. Найдите площадь треугольника BDM.
- 523 Два квадрата со стороной а имеют одну общую вершину, причем сторона одного из них лежит на диа-гонали другого. Найдите площадь общей части этих квадратов.
- 524 Докажите, что площадь S треугольника со сторонами a, b, c выражается формулой
- 525 Расстояние от точки М, лежащей внутри треугольника ABC, до прямой АВ равно 6 см, а до прямой АС равно 2 см. Найдите расстояние от точки М до прямой BC, если АВ = 13 см, ВС =14 см, АС =15 см.
- 526 В ромбе высота, равная см, составляет большей диагонали. Найдите площадь ромба.
- 527 В равнобедренной трапеции диагональ равна 10 см, а высота равна 6 см. Найдите площадь трапеции.
- 528 В трапеции ABCD диагонали пересекаются в точке О. Найдите площадь треугольника АОВ, если боковая сторона CD трапеции равна 12 см, а расстояние от точки О до прямой CD равно 5 см.
- 529 Диагонали четырехугольника равны 16 см и 20 см и пересекаются под углом в 30°. Найдите площадь этого четырехугольника.
- 530 В равнобедренном треугольнике ABC с основанием ВС высота AD равна 8 см. Найдите площадь треугольника ABC, если медиана DM треугольника ADC равна 8 см.
- 531 Стороны AB и ВС прямоугольника ABCD равны соответственно 6 см и 8 см. Прямая, проходящая через вершину С и перпендикулярная к прямой BD, пересекает сторону AD в точке М, а диагональ BD — в точке К. Найдите площадь четырехугольника АВКМ.
- 532 В треугольнике ABC проведена высота ВН. Докажите, что если:
Глава VII. Подобные треугольники. §1. Определение подобных треугольников
- 533 Найдите отношение отрезков АВ и CD, если их длины равны соответственно 15 см и 20 см. Изменится ли это отношение, если длины отрезков выразить в миллиметрах?
- 534 Пропорциональны ли изображенные на рисунке 189 отрезки: а) AC, CD и М1М2, ММ1; б) АВ, ВС, CD и ММ2, MM1, М1М2; в) АВ, BD и MM1, М1М2?
- 535 Докажите, что биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника.
- 536 Отрезок BD является биссектрисой треугольника ABC. а) Найдите АВ, если ВС = 9 см, AD= 7,5 см, DC=4,5cm. б) Найдите DC, если АВ = 30, AD = 20, ВС= 16.
- 537 Отрезок AD является биссектрисой треугольника ABC. Найдите BD и DC, если АВ = 14 см, ВС = 20см, АС=21 см.
- 538 Биссектриса AD треугольника ABC делит сторону ВС на отрезки CD и BD, равные соответственно 4,5 см и 13,5 см. Найдите АВ и АС, если периметр треугольника ABC равен 42 см.
- 539 В треугольник MNK вписан ромб MDEF так, что вершины D, Е и F лежат соответственно на сторонах MN, NK и МК. Найдите отрезки NE и ЕК, если MN= 7 см, NK=6 см, МК=5 см.
- 540 Периметр треугольника CDE равен 55 см. В этот треугольник вписан ромб DMFN так, что вершины М, F и N лежат соответственно на сторонах CD, СЕ и DE. Найдите стороны CD и DE, если CF=8 см, EF=12 см.
- 541 Подобны ли треугольники ABC и DEF, если ∠A= 106°, ∠B = 34°, ∠E = 106°, ∠F=40°, АС=4,4см, АВ = 5,2см, BC=7,6см, DE = 15,6см, DF=22,8см, EF=13,2см?
- 542 В подобных треугольниках ABC и KMN стороны АВ и КМ, ВС и MN являются сходственными. Найдите стороны треугольника KMN, если АВ = 4 см, ВС =5 см, СА=7см, KM/AB=2,1.
- 543 Докажите, что отношение сходственных сторон подобных треугольников равно отношению высот, проведенных к этим сторонам.
- 544 Площади двух подобных треугольников равны 75 м2 и 300 м2. Одна из сторон второго треугольника равна 9 м. Найдите сходственную ей сторону первого треугольника.
- 545 Треугольники ABC и А1В1С1 подобны, и их сходственные стороны относятся как 6:5. Площадь треугольника ABC больше площади треугольника А1В1С1 на 77 см2. Найдите площади треугольников.
- 546 План земельного участка имеет форму треугольника. Площадь изображенного на плане треугольника равна 87,5 см2. Найдите площадь земельного участка, если план выполнен в масштабе 1:100 000.
- 547 Докажите, что отношение периметров двух подобных треугольников равно коэффициенту подобия.
- 548 Треугольники ABC и А1В1С1 подобны. Сходственные стороны ВС и В1С1 соответственно равны 1,4 м и 56 см. Найдите отношение периметров треугольников ABC и А1В1С1.
- 549 Стороны данного треугольника равны 15 см, 20 см и 30 см. Найдите стороны треугольника, подобного данному, если его периметр равен 26 см.
Глава VII. Подобные треугольники. §2. Признаки подобия треугольников
- 550 По данным рисунка 193 найдите x и y.
- 551 На стороне CD параллелограмма ABCD отмечена точка Е. Прямые АЕ и ВС пересекаются в точке F. Найдите: a) EF и FC, если DE=8cm, ЕС=4 см, ВС= 7 см, АЕ=10см; б) DE и ЕС, если АВ = 8 см, AD=5 см, CF=2 см.
- 552 Диагонали трапеции ABCD с основаниями АВ и CD пересекаются в точке О. Найдите:
- 553 Подобны ли равнобедренные треугольники, если они имеют: а) по равному острому углу; б) по равному тупому углу; в) по прямому углу? Ответ обоснуйте.
- 554 Основания трапеции равны 5 см и 8 см. Боковые стороны, равные 3,6 см и 3,9 см, продолжены до пересечения в точке М. Найдите расстояния от точки М до концов меньшего основания.
- 555 Точки М, N и Р лежат соответственно на сторонах АВ, ВС и СА треугольника ABC, причем MN||AC, NP||AB. Найдите стороны четырехугольника AMNP, если: а) АВ = 10 см, АС= 15 см, PN:MN=2:3; б) АМ=АР, АВ=а, АС=b.
- 556 Стороны угла О пересечены параллельными прямыми АВ и CD. Докажите, что отрезки ОА и АС пропорциональны отрезкам ОВ и BD (рис. 194).
- 557 Стороны угла А пересечены параллельными прямыми ВС и DE, причем точки В и D лежат на одной стороне угла, а С и E — на другой. Найдите: а) АС, если СЕ = 10 см, AD = 22 см, BD = 8см; б) BD и DE, если АВ = 10 см, АС=8 см, ВС=4 см, СE = 4 см; в) ВС, если
- 558 Прямые а и b пересечены параллельными прямыми АА1, BB1, CC1, причем точки А, В и С лежат на прямой a, а точки A1, В1и С1 — на прямой b. Докажите, что AB/BC=A1B1/B1C1.
- 559 На одной из сторон данного угла А отложены отрезки АВ=5 см и АС = 16 см. На другой стороне этого же угла отложены отрезки AD=8 см и AF= 10 см. Подобны ли треугольники ACD и AFB? Ответ обоснуйте.
- 560 Подобны ли треугольники ABC и A1B1C1, если: а) АВ = 3 см, ВС=5 см, СА=7 см, А1В1=4,5см, В1С1 = 7,5 см, C1A1 = 10,5 см; б) АВ = 1,7 см, ВС=3см, СА=4,2см, А1В1=34дм, B1C1=60дм, С1А1=84дм?
- 561 Докажите, что два равносторонних треугольника подобны.
- 562 В треугольнике ABC сторона АВ равна а, а высота CH равна h. Найдите сторону квадрата, вписанного в треугольник ABC так, что две соседние вершины квадрата лежат на стороне АВ, а две другие — соответственно на сторонах АС и ВС.
- 563 Через точку М, взятую на медиане AD треугольника ABC, и вершину В проведена прямая, пересекающая сторону АС в точке К. Найдите отношение AK/KC, если: а) М — середина отрезка AD; б) AM/MD=½.
Глава VII. Подобные треугольники. §3. Применение подобия к доказательству теорем и решению задач
- 564 Дан треугольник, стороны которого равны 8 см, 5 см и 7 см. Найдите периметр треугольника, вершинами которого являются середины сторон данного треугольника.
- 565 Расстояние от точки пересечения диагоналей прямоугольника до прямой, содержащей его большую сторону, равно 2,5 см. Найдите меньшую сторону прямоугольника.
- 566 Точки Р и Q — середины сторон АВ и АС треугольника ABC. Найдите периметр треугольника ABC, если периметр треугольника APQ равен 21 см.
- 567 Докажите, что середины сторон произвольного четырехугольника являются вершинами параллелограмма.
- 568 Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон: а) прямоугольника; б) равнобедренной трапеции.
- 569 Докажите, что отрезок, соединяющий середины диагоналей трапеции, параллелен ее основаниям и равен полуразности оснований.
- 570 Диагональ АС параллелограмма ABCD равна 18 см. Середина М стороны АВ соединена с вершиной D. Найдите отрезки, на которые делится диагональ АС отрезком DM.
- 571 В треугольнике ABC медианы АА1 и ВВ1 пересекаются в точке О. Найдите площадь треугольника ABC, если площадь треугольника АВО равна S.
- 572 Найдите: a) h, а и b, если bс= 25, ас=16; б) h, а и b, если bс = 36, ас=64; в) а, с и ас, если b=12, bс= 6; г) b, с и bс, если а = 8, ас= 4; д) h, b, ас и bс, если а = 6, с = 9.
- 573 Выразите ас и bс через а, b и с.
- 574 Докажите, что:
- 575 Катеты прямоугольного треугольника относятся как 3 : 4, а гипотенуза равна 50 мм. Найдите отрезки, на которые гипотенуза делится высотой, проведенной из вершины прямого угла.
- 576 Высота прямоугольного треугольника, проведенная из вершины прямого угла, делит гипотенузу на отрезки, один из которых на 11см больше другого. Найдите гипотенузу, если катеты треугольника относятся как 6:5.
- 577 В треугольнике, стороны которого равны 5 см, 12 см и 13 см, проведена высота к его большей стороне. Найдите отрезки, на которые высота делит эту сторону.
- 578 Используя утверждение 2°, п. 63, докажите теорему Пифагора: в прямоугольном треугольнике ABC с прямым углом С выполняется равенство АС2 + ВС2 = АВ2.
- 579 Для определения высоты столба A1C1, изображенного на рисунке 199, использован шест с вращающейся планкой. Чему равна высота столба, если ВС1 = 6,3 м, ВС = 3,4 м, АС = 1,7 м?
- 580 Длина тени дерева равна 10,2 м, а длина тени человека, рост которого 1,7 м, равна 2,5 м. Найдите высоту дерева.
- 581 Для определения высоты дерева можно использовать зеркало так, как показано на рисунке 203. Луч света FD, отражаясь от зеркала в точке D, попадает в глаз человека (точку В). Определите высоту дерева, если АС= 165 см, ВС= 12 см, AD)=120 см, DE = 4,8m, &
- 582 Для определения расстояния от точки А до недоступной точки В на местности выбрали точку С и измерили отрезок АС, углы ВАС и АСВ. Затем построили на бумаге треугольник A1B1C1, подобный треугольнику ABC. Найдите АВ, если АС= 42 м, А1С1 =6,3 см, А1В1= 7,
- 583 На рисунке 204 показано, как можно определить ширину ВВ1 реки, рассматривая два подобных треугольника ABC и АВ1С1. Определите ВВ1, если АС=100 м, АС1=32 м, АВ1=34 м.
- 584 Разделите данный отрезок АВ на два отрезка АХ и ХВ, пропорциональные данным отрезкам P1Q1 и P2Q2.
Глава VII. Подобные треугольники. Задачи на построение
- 585 Начертите отрезок АВ и разделите его в отношении: а) 2 : 5; б) 3 : 7; в) 4 : 3.
- 586 Постройте треугольник по двум углам и биссектрисе, проведенной из вершины меньшего из данных углов.
- 587 Постройте треугольник по двум углам и высоте, проведенной из вершины третьего угла.
- 588 Постройте треугольник ABC по углу А и медиане AM, если известно, что АВ :АС=2 : 3.
- 589 Постройте треугольник ABC по углу А и стороне ВС, если известно, что АВ :АС=2 : 1.
- 590 Постройте прямоугольный треугольник по гипотенузе и отношению катетов.
Глава VII. Подобные треугольники. §4. Соотношения между сторонами и углами прямоугольного треугольника
- 591 Найдите синус, косинус и тангенс углов А и В треугольника ABC с прямым углом С, если: а) ВС=8, АВ=17; б) ВС=21, АС=20; в) ВС=1, АС=2; г)АС=24, АВ = 25.
- 592 Постройте угол а, если:
- 593 Найдите: a) sin α и tg α, если cos α= ½; б) sin α и tg α, если cos α= ⅔; в) cos α и tg α, если sin α = √3/2; г) cos α и tg α, если sin α = ¼.
- 594 В прямоугольном треугольнике один из катетов равен b, а противолежащий угол равен β. а) Выразите другой катет, противолежащий ему угол и гипотенузу через b и β. б) Найдите их значения, если b=10 см, β=50°.
- 595 В прямоугольном треугольнике один из катетов равен b, а прилежащий к нему угол равен α. а) Выразите второй катет, прилежащий к нему острый угол и гипотенузу через b и α. б) Найдите их значения, если b=12см, α=42°.
- 596 В прямоугольном треугольнике гипотенуза равна с, а один из острых углов равен α. Выразите второй острый угол и катеты через с и α и найдите их значения, если с=24 см, а α=35°.
- 597 Катеты прямоугольного треугольника равны а и b. Выразите через а и b гипотенузу и тангенсы острых углов треугольника и найдите их значения при а = 12, b=15.
- 598 Найдите площадь равнобедренного треугольника с углом а при основании, если: а) боковая сторона равна b; б) основание равно а.
- 599 Найдите площадь равнобедренной трапеции с основаниями 2 см и 6 см, если угол при большем основании равен а.
- 600 Насыпь шоссейной дороги имеет в верхней части ширину 60 м. Какова ширина насыпи в нижней ее части, если угол наклона откосов равен 60°, а высота насыпи равна 12 м (рис. 209)?
- 601 Найдите углы ромба с диагоналями 2√3 и 2.
- 602 Стороны прямоугольника равны 3 см и √3 см. Найдите углы, которые образует диагональ со сторонами прямоугольника.
- 603 В параллелограмме ABCD сторона AD равна 12 см, а угол BAD равен 47°50'. Найдите площадь параллелограмма, если его диагональ BD перпендикулярна к стороне АВ.
Глава VII. Подобные треугольники. Дополнительные задачи
- 604 Треугольники ABC и А1В1С1 подобны, АВ = 6см, ВС=9 см, СА= 10 см. Наибольшая сторона треугольника А1В1С1 равна 7,5 см. Найдите две другие стороны треугольника
- 605 Диагональ АС трапеции ABCD делит ее на два подобных треугольника. Докажите, что АС2 =a⋅b, где а и b — основания трапеции.
- 606 Биссектрисы MD и NK треугольника MNP пересекаются в точке О. Найдите отношение OK: ON, если MN=5 см, NP=3 см, МР=7 см.
- 607 Основание равнобедренного треугольника относится к боковой стороне как 4:3, а высота, проведенная к основанию, равна 30 см. Найдите отрезки, на которые эту высоту делит биссектриса угла при основании.
- 608 На продолжении боковой стороны ОВ равнобедренного треугольника АОВ с основанием АВ взята точка С так, что точка В лежит между точками О и С. Отрезок АС пересекает биссектрису угла АОВ в точке М. Докажите, что АМ<МС.
- 609 На стороне ВС треугольника ABC взята точка D так, что BD/AB=DC/AC. Докажите, что AD — биссектриса треугольника ABC.
- 610 Прямая, параллельная стороне АВ треугольника ABC, делит сторону АС в отношении 2:7, считая от вершины А. Найдите стороны отсеченного треугольника, если АВ= 10 см, ВС = 18 см, СА=21,6 см.
- 611 Докажите, что медиана AM треугольника ABC делит пополам любой отрезок, параллельный стороне ВС, концы которого лежат на сторонах АВ и АС.
- 612 Два шеста АВ и CD разной длины а и b установлены вертикально на некотором расстоянии друг от друга так, как показано на рисунке 210. Концы А и D, В и С соединены веревками, которые пересекаются в точке О. По данным рисунка докажите, что: a) m/d=x/b и
- 613 Докажите, что треугольники ABC и А1В1С1 подобны, если:
- 614 Диагонали прямоугольной трапеции ABCD с прямым углом А взаимно перпендикулярны. Основание АВ равно 6 см, а боковая сторона AD равна 4 см. Найдите DC, DB и СВ.
- 615* Отрезок с концами на боковых сторонах трапеции параллелен ее основаниям и проходит через точку пересечения диагоналей. Найдите длину этого отрезка, если основания трапеции равны а и b.
- 616 Докажите, что вершины треугольника равноудалены от прямой, содержащей его среднюю линию.
- 617 Докажите, что середины сторон ромба являются вершинами прямоугольника.
- 618 Точки М и N являются соответственно серединами сторон CD и ВС параллелограмма ABCD. Докажите, что прямые AM и AN делят диагональ BD на три равные части.
- 619 Биссектриса внешнего угла при вершине А треугольника ABC пересекает прямую ВС в точке D. Докажите что BD/AB=DC/AC.
- 620 В треугольнике ABC (AB≠AC) через середину стороны ВС проведена прямая, параллельная биссектрисе угла А, которая пересекает прямые АВ и АС соответственно в точках D и Е. Докажите, что BD=CE.
- 621 В трапеции ABCD с основаниями AD и ВС сумма оснований равна b, диагональ АС равна a, ∠ACB = а. Найдите площадь трапеции.
- 622 На стороне AD параллелограмма ABCD отмечена точка К так, что AK=¼KD. Диагональ АС и отрезок ВК пересекаются в точке Р. Найдите площадь параллелограмма ABCD, если площадь треугольника АРК равна 1 см2.
- 623 В прямоугольной трапеции ABCD с основаниями AD и ВС ∠A=∠B=90°, ∠ACD=90°, ВС=4 см, AD=16 см. Найдите углы С и D трапеции.
- 624 Докажите, что медианы треугольника разбивают его на шесть треугольников, площади которых попарно равны.
- 625 Основание AD равнобедренной трапеции ABCD в 5 раз больше основания ВС. Высота ВН пересекает диагональ АС в точке М, площадь треугольника АМН равна 4 см2. Найдите площадь трапеции ABCD.
- 626* Докажите, что треугольники ABC и А1В1С1 подобны, если
- 627 Дан треугольник ABC. Постройте треугольник A1B1C1, подобный треугольнику ABC, площадь которого в два раза больше площади треугольника ABC.
- 628 Даны три отрезка, длины которых соответственно равны а, b и с. Постройте отрезок, длина которого равна ab/c.
- 629 Постройте треугольник, если даны середины его сторон.
- 630 Постройте треугольник по стороне и медианам, проведенным к двум другим сторонам.
Глава VIII. Окружность. §1. Касательная к окружности
- 631 Пусть d — расстояние от центра окружности радиуса r до прямой р. Каково взаимное расположение прямой р и окружности, если: а) r = 16 см, d = 12 см; б) r = 5 см, d =4,2 см; в) r =7,2 дм, d =3,7 дм; г) r = 8 см, d = 1,2 дм; д) r = 5 см, d =50 мм?
- 632 Расстояние от точки А до центра окружности меньше радиуса окружности. Докажите, что любая прямая, проходящая через точку А, является секущей по отношению к данной окружности.
- 633 Даны квадрат ОАВС, сторона которого равна 6 см, и окружность с центром в точке О радиуса 5 см. Какие из прямых ОА, АВ, ВС и АС являются секущими по отношению к этой окружности?
- 634 Радиус ОМ окружности с центром О делит хорду АВ пополам. Докажите, что касательная, проведенная через точку М, параллельна хорде АВ.
- 635 Через точку А окружности проведены касательная и хорда, равная радиусу окружности. Найдите угол между ними.
- 636 Через концы хорды АВ, равной радиусу окружности, проведены две касательные, пересекающиеся в точке С. Найдите угол АСВ.
- 637 Угол между диаметром АВ и хордой АС равен 30°. Через точку С проведена касательная, пересекающая прямую АВ в точке D. Докажите, что треугольник ACD равнобедренный.
- 638 Прямая АВ касается окружности с центром О радиуса r в точке В. Найдите АВ, если ОА=2 см, а r = 1,5 см.
- 639 Прямая АВ касается окружности с центром О радиуса r в точке В. Найдите АВ, если ∠AOB = 60°, а r = 12 см.
- 640 Даны окружность с центром О радиуса 4,5 см и точка А. Через точку А проведены две касательные к окружности. Найдите угол между ними, если ОА = 9 см.
- 641 Отрезки АВ и АС являются отрезками касательных к окружности с центром О, проведенными из точки А. Найдите угол ВАС, если середина отрезка АО лежит на окружности.
- 642 На рисунке 213 ОВ=3см, ОА=6 см. Найдите АВ, AC, ∠3 и ∠4.
- 643 Прямые АВ и АС касаются окружности с центром О в точках В и С. Найдите ВС, если ∠OAB =30°, АВ=5 см.
- 644 Прямые МА и MB касаются окружности с центром О в точках А и В. Точка С симметрична точке О относительно точки В. Докажите, что ∠AMC = 3∠BMC.
- 645 Из концов диаметра АВ данной окружности проведены перпендикуляры АА1 и ВВ1 к касательной, которая не перпендикулярна к диаметру АВ. Докажите, что точка касания является серединой отрезка A1B1.
- 646 В треугольнике ABC угол В прямой. Докажите, что: а) прямая ВС является касательной к окружности с центром А радиуса АВ; б) прямая АВ является касательной к окружности с центром С радиуса СВ; в) прямая АС не является касательной к окружностям с центром
- 647 Отрезок АН — перпендикуляр, проведенный из точки А к прямой, проходящей через центр О окружности радиуса 3 см. Является ли прямая АН касательной к окружности, если: а)ОА=5см, АН = 4 см; б) ∠HAO = 45°, ОА=4см; в) ∠HAO= 30°, ОА = 6 см?
- 648 Постройте касательную к окружности с центром О: а) параллельную данной прямой; б) перпендикулярную к данной прямой.
Глава VIII. Окружность. §2. Центральные и вписанные углы
- 649 Начертите окружность с центром О и отметьте на ней точку А. Постройте хорду АВ так, чтобы: a) ∠AOB = 60°; б) ∠AOB = 90°; в) ∠AOB = 120°; г) ∠AOB= 180°.
- 650 Радиус окружности с центром О равен 16. Найдите хорду АВ, если: a) ∠AOB = 60°; б) ∠AOB = 90°; в) ∠AOB=180°.
- 651 Хорды АВ и CD окружности с центром О равны, а) Докажите, что две дуги с концами А и В соответственно равны двум дугам с концами С и D. б) Найдите дуги с концами С и D, если ∠AOB = 112°.
- 652 На полуокружности АВ взяты точки С и D так, что ∪AC=37°, ∪BD=23°. Найдите хорду CD, если радиус окружности равен 15см.
- 653 Найдите вписанный угол ABC, если дуга АС, на которую он опирается, равна: а) 48°; б) 57°; в) 90°; г) 124°; д) 180°.
- 654 По данным рисунка 222 найдите х.
- 655 Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. Найдите каждый из этих углов.
- 656 Хорда АВ стягивает дугу, равную 115°, а хорда АС — дугу в 43°. Найдите угол ВАС.
- 657 Точки А и В разделяют окружность на две дуги, меньшая из которых равна 140°, а большая точкой М делится в отношении 6:5, считая от точки А. Найдите угол ВАМ.
- 658 Через точку А к данной окружности проведены касательная АВ (В — точка касания) и секущая AD, проходящая через центр О (D — точка на окружности, О лежит между А и D). Найдите ∠BAD и ∠ADB, если ∪BD = 110°20'.
- 659 Докажите, что градусные меры дуг окружности, заключенных между параллельными хордами, равны.
- 660 Через точку, лежащую вне окружности, проведены две секущие, образующие угол в 32°. Большая дуга окружности, заключенная между сторонами этого угла, равна 100°. Найдите меньшую дугу.
- 661 Найдите острый угол, образованный двумя секущими, проведенными из точки, лежащей вне окружности, если дуги, заключенные между секущими, равны 140° и 52°.
- 662 Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если ∪AD=54°, ∪BC= 70°.
- 663 Отрезок АС — диаметр окружности, АВ — хорда, МА — касательная, угол МАВ острый. Докажите, что ∠MAB=∠ACB.
- 664 Прямая AM — касательная к окружности, АВ — хорда этой окружности. Докажите, что угол МАВ измеряется половиной дуги АВ, расположенной внутри угла МАВ.
- 665 Вершины треугольника ABC лежат на окружности. Докажите, что если АВ — диаметр окружности, то ∠C>∠A и ∠C>∠B.
- 666 Хорды АВ и CD пересекаются в точке Е. Найдите ED, если: а) АЕ = 5, ВЕ = 2, СЕ = 2,5; б) АЕ = 16, ВЕ= 9, CE=ED; в) АЕ = 0,2, ВЕ = 0,5, CE=0,4.
- 667 Диаметр АА1 окружности перпендикулярен к хорде ВВ1 и пересекает ее в точке С. Найдите BB1 если АС=4 см, СА1=8 см.
- 668 Докажите, что перпендикуляр, проведенный из какой-нибудь точки окружности к диаметру, есть среднее пропорциональное для отрезков, на которые основание перпендикуляра делит диаметр.
- 669 Пользуясь утверждением, сформулированным в задаче 668, постройте отрезок, равный среднему пропорциональному для двух данных отрезков.
- 670 Через точку А проведены касательные АВ (В — точка касания) и секущая, которая пересекает окружность в точках Р и Q. Докажите, что AB2 = AP⋅AQ.
- 671 Через точку А проведены касательная АВ (В — точка касания) и секущая, которая пересекает окружность в точках С и D. Найдите CD, если: а) АВ = 4 см, АС=2 см; б) АВ = 5 см, AD=10 см.
- 672 Через точку А, лежащую вне окружности, проведены две секущие, одна из которых пересекает окружность в точках B1, C1 а другая — в точках В2, С2. Докажите, что АВ1⋅АС1=АВ2⋅АС2.
- 673 К данной окружности постройте касательную, проходящую через данную точку вне окружности.
Глава VIII. Окружность. §3. Четыре замечательные точки треугольника
- 674 Из точки М биссектрисы неразвернутого угла О проведены перпендикуляры МА и MB к сторонам этого угла. Докажите, что AB⊥OM.
- 675 Стороны угла О касаются каждой из двух окружностей, имеющих общую касательную в точке А. Докажите, что центры этих окружностей лежат на прямой ОА.
- 676 Стороны угла А касаются окружности с центром О радиуса r. Найдите: а) ОА, если r = 5 см, ∠A=60°; б) r, если ОА= 14 дм, ∠A=90°.
- 677 Биссектрисы внешних углов при вершинах В и С треугольника ABC пересекаются в точке О. Докажите, что точка О является центром окружности, касающейся прямых АВ, ВС, АС.
- 678 Биссектрисы АА1 и ВВ1 треугольника ABC пересекаются в точке М. Найдите углы ACM и ВСМ, если: a) ∠AMB = 136°; б)∠AMB = 111°.
- 679 Серединный перпендикуляр к стороне ВС треугольника ABC пересекает сторону АС в точке D. Найдите: a) AD и CD, если BD=5 см, АС=8,5 см; б) АС, если BD = 11,4см, AD=3,2 см.
- 680 Серединные перпендикуляры к сторонам АВ и АС треугольника ABC пересекаются в точке D стороны ВС. Докажите, что: а) точка D — середина стороны ВС; б) ∠A=∠B+∠С.
- 681 Серединный перпендикуляр к стороне АВ равнобедренного треугольника ABC пересекает сторону ВС в точке Е. Найдите основание АС, если периметр треугольника ABC равен 27 см, а АВ=18 см.
- 682 Равнобедренные треугольники ABC и ABD имеют общее основание АВ. Докажите, что прямая CD проходит через середину отрезка АВ.
- 683 Докажите, что если в треугольнике ABC стороны АВ и АС не равны, то медиана AM треугольника не является высотой.
- 684 Биссектрисы углов при основании АВ равнобедренного треугольника ABC пересекаются в точке М. Докажите, что прямая СМ перпендикулярна к прямой АВ.
- 685 Высоты АА1 и ВВ1 равнобедренного треугольника ABC, проведенные к боковым сторонам, пересекаются в точке М. Докажите, что прямая МС — серединный перпендикуляр к отрезку АВ.
- 686 Постройте серединный перпендикуляр к данному отрезку.
- 687 Даны прямая а и две точки А и В, лежащие по одну сторону от этой прямой. На прямой а постройте точку М, равноудаленную от точек А и В.
- 688 Даны угол и отрезок. Постройте точку, лежащую внутри данного угла, равноудаленную от его сторон и равноудаленную от концов данного отрезка.
Глава VIII. Окружность. §4. Вписанная и описанная окружности
- 689 В равнобедренном треугольнике основание равно 10 см, а боковая сторона равна 13 см. Найдите радиус окружности, вписанной в этот треугольник.
- 690 Найдите основание равнобедренного треугольника, если центр вписанной в него окружности делит высоту, проведенную к основанию, в отношении 12 : 5, считая от вершины, а боковая сторона равна 60 см.
- 691 Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см, считая от основания. Найдите периметр треугольника.
- 692 В треугольник ABC вписана окружность, которая касается сторон АВ, ВС и СА в точках Р, Q и R. Найдите АР, РВ, BQ, QC, CR, RA, если АВ = 10см, ВС =12 см, СА= 5 см.
- 693 В прямоугольный треугольник вписана окружность радиуса r. Найдите периметр треугольника, если: а) гипотенуза равна 26 см, r = 4 см; б) точка касания делит гипотенузу на отрезки, равные 5 см и 12 см.
- 694 Найдите диаметр окружности, вписанной в прямоугольный треугольник, если гипотенуза треугольника равна с, а сумма катетов равна m.
- 695 Сумма двух противоположных сторон описанного четырехугольника равна 15 см. Найдите периметр этого четырехугольника.
- 696 Докажите, что если в параллелограмм можно вписать окружность, то этот параллелограмм — ромб.
- 697 Докажите, что площадь описанного многоугольника равна половине произведения его периметра на радиус вписанной окружности.
- 698 Сумма двух противоположных сторон описанного четырехугольника равна 12 см, а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника.
- 699 Сумма двух противоположных сторон описанного четырехугольника равна 10 см, а его площадь — 12 см2. Найдите радиус окружности, вписанной в этот четырехугольник.
- 700 Докажите, что в любой ромб можно вписать окружность.
- 701 Начертите три треугольника: остроугольный, прямоугольный и тупоугольный. В каждый из них впишите окружность.
- 702 В окружность вписан треугольник ABC так, что АВ — диаметр окружности. Найдите углы треугольника, если: а) ∪ВС= 134°; б) ∪АС= 70°.
- 703 В окружность вписан равнобедренный треугольник ABC с основанием ВС. Найдите углы треугольника, если ∪ВС= 102°.
- 704 Окружность с центром О описана около прямоугольного треугольника, а) Докажите, что точка О — середина гипотенузы, б) Найдите стороны треугольника, если диаметр окружности равен d, а один из острых углов треугольника равен α.
- 705 Около прямоугольного треугольника ABC с прямым углом С описана окружность. Найдите радиус этой окружности, если: а) АС = 8см, ВС=6см; б) АС= =18 см, ∠B=30°.
- 706 Найдите сторону равностороннего треугольника, если радиус описанной около него окружности равен 10 см.
- 707 Угол, противолежащий основанию равнобедренного треугольника, равен 120°, боковая сторона треугольника равна 8 см. Найдите диаметр окружности, описанной около этого треугольника.
- 708 Докажите, что можно описать окружность: а) около любого прямоугольника; б) около любой равнобедренной трапеции.
- 709 Докажите, что если около параллелограмма можно описать окружность, то этот параллелограмм — прямоугольник.
- 710 Докажите, что если около трапеции можно описать окружность, то эта трапеция равнобедренная.
- 711 Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. Для каждого из них постройте описанную окружность.
Глава VIII. Окружность. Дополнительные задачи
- 712 Докажите, что касательные, проведённые через концы хорды, не являющейся диаметром окружности, пересекаются.
- 713 Прямые АВ и АС — касательные к окружности с центром О, В и С — точки касания. Через произвольную точку X, взятую на дуге ВС, проведена касательная к этой окружности, пересекающая отрезки АВ и АС в точках М и N. Докажите, что периметр треугольника AMN
- 714* Две окружности имеют общую точку М и общую касательную в этой точке. Прямая АВ касается одной окружности в точке А, а другой — в точке В. Докажите, что точка М лежит на окружности с диаметром АВ.
- 715 Диаметр АА1 окружности перпендикулярен к хорде ВВ1. Докажите, что градусные меры дуг АВ и АВ1, меньших полуокружности, равны.
- 716 Точки А, В, С и D лежат на окружности. Докажите, что если ∪AB = ∪CD, то AB=CD.
- 717 Отрезок АВ является диаметром окружности, а хорды ВС и AD параллельны. Докажите, что хорда CD является диаметром.
- 718 По данным рисунка 237 докажите, что
- 719 Через точку, лежащую вне окружности, проведены две секущие. Докажите, что угол между ними измеряется полуразностью дуг, заключенных внутри угла.
- 720 Может ли вершина разностороннего треугольника лежать на серединном перпендикуляре к какой-либо стороне? Ответ обоснуйте.
- 721 Докажите, что если в прямоугольник можно вписать окружность, то этот прямоугольник — квадрат.
- 722 Четырехугольник ABCD описан около окружности радиуса r. Известно, что АВ : CD=2 : 3, AD : ВС=2 : 1. Найдите стороны четырехугольника, если его площадь равна S.
- 723 Докажите, что если прямые, содержащие основания трапеции, касаются окружности, то прямая, проходящая через середины боковых сторон трапеции, проходит через центр этой окружности.
- 724 Докажите, что если в выпуклом четырехугольнике суммы противоположных сторон равны, то в этот четырехугольник можно вписать окружность.
- 725 Найдите радиус окружности, вписанной в прямоугольную трапецию с основаниями а и b.
- 726 Центр описанной около треугольника окружности лежит на медиане. Докажите, что этот треугольник либо равнобедренный, либо прямоугольный.
- 727 В равнобедренный треугольник вписана окружность с центром О1 и около него описана окружность с центром O2. Докажите, что точки О1 и O2 лежат на серединном перпендикуляре к основанию треугольника.
- 728 Докажите, что если около ромба можно описать окружность, то этот ромб — квадрат.
- 729* Докажите, что если в четырехугольнике сумма противоположных углов равна 180°, то около этого четырехугольника можно описать окружность.
- 730 Через точки А и В проведены прямые, перпендикулярные к сторонам угла АОВ и пересекающиеся в точке С внутри угла. Докажите, что около четырехугольника АСВО можно описать окружность.
- 731 Докажите, что около выпуклого четырехугольника, образованного при пересечении биссектрис углов трапеции, можно описать окружность.
- 732 В прямоугольном треугольнике ABC из точки М стороны АС проведен перпендикуляр МН к гипотенузе АВ. Докажите, что углы МНС и МВС равны.
- 733 Найдите радиус вписанной в равносторонний треугольник окружности, если радиус описанной окружности равен 10 см.
- 734 Докажите, что если в параллелограмм можно вписать окружность и можно описать около него окружность, то этот параллелограмм — квадрат.
- 735 В трапецию с основаниями a и b можно вписать окружность и около этой трапеции можно описать окружность. Найдите радиус вписанной окружности.
- 736 Даны прямая а, точка А, лежащая на этой прямой, и точка В, не лежащая на ней. Постройте окружность, проходящую через точку В и касающуюся прямой а в точке А.
- 737 Даны две параллельные прямые и точка, не лежащая ни на одной из них. Постройте окружность, проходящую через данную точку и касающуюся данных прямых.
- 738 Отметьте точки А, B и С, не лежащие на одной прямой. Начертите все ненулевые векторы, начало и конец которых совпадают с какими-то двумя из этих точек. Выпишите все полученные векторы и укажите начало и конец каждого вектора.
- 739 Выбрав подходящий масштаб, начертите векторы, изображающие полет самолета сначала на 300 км на юг от города А до В, а потом на 500 км на восток от города В до С. Затем начертите вектор AC, который изображает перемещение из начальной точки в конечную.
- 740 Начертите векторы АВ, CD, и EF так, чтобы:
- 741 Начертите два неколлинеарных вектора a и b . Изобразите несколько векторов: a) сонаправленных с вектором a ; б) сонаправленных с вектором b ; в) противоположно направленных вектору b ; г) противоположно направленных вектору a.
- 742 Начертите два вектора: а) имеющие равные длины и неколлинеарные; б) имеющие равные длины и сонап-равленные; в) имеющие равные длины и противоположно направленные. В каком случае полученные векторы равны?
- 743 Начертите ненулевой вектор а и отметьте на плоскости три точки А, В и С. Отложите от точек А, В и С векторы, равные а.
Глава IX. Векторы. §1. Понятие вектора
- 744 Какие из следующих величин являются векторными: скорость, масса, сила, время, температура, длина, площадь, работа?
- 745 В прямоугольнике ABCD АВ = 3 см, ВС=4 см, М— середина стороны АВ. Найдите длины векторов
- 746 Основание AD прямоугольной трапеции ABCD с прямым углом А равно 12 см, АВ=5 см, ∠D=45°. Найдите длины векторов BD, CD и АС .
- 747 Выпишите пары коллинеарных векторов, которые определяются сторонами: а) параллелограмма MNPQ; б) трапеции ABCD с основаниями AD и ВС; в) треугольника FGH. Укажите среди них пары сонаправленных и противоположно направленных векторов.
- 748 В параллелограмме ABCD диагонали пересекаются в точке О. Равны ли векторы:
- 749 Точки S и Т являются серединами боковых сторон MN и LK равнобедренной трапеции MNLK. Равны ли векторы:
- 750 Докажите, что если векторы АВ и CD равны, то середины отрезков AD и ВС совпадают. Докажите обратное утверждение: если середины отрезков AD и ВС совпадают, то АВ = CD.
- 751 Определите вид четырехугольника ABCD, если:
- 752 Верно ли утверждение:
Глава IX. Векторы. §2. Сложение и вычитание векторов
- 753 Турист прошел 20 км на восток из города А в город В, а потом 30 км на восток в город С. Выбрав подходящий масштаб, начертите векторы АВ и ВС. Равны ли векторы АВ+ВС и АС ?
- 754 Начертите попарно неколлинеарные векторы х, у , z и постройте векторы x+у, x+z, z+y .
- 755 Начертите попарно неколлинеарные векторы а , b, с , d , е и, пользуясь правилом многоугольника, постройте вектор а+b + c+ d + e.
- 756 Начертите попарно неколлинеарные векторы х , у , z и постройте векторы х-у , z -у , х - z , - х , -у , - z .
- 757 Начертите векторы х, у и z так, чтобы x↑↑y, x↑↓z . Постройте векторы х+у , у - z , х + z .
- 758 Начертите два ненулевых коллинеарных вектора а и b так, чтобы | а |≠| b |. Постройте векторы: a) а - b ; б) b-a;в)-а+b. Выполните еще раз построение для случая, когда |a| = |b|.
- 759 Дан произвольный четырехугольник MNPQ. Докажите, что: a) MN+NQ=MP+PQ; б) MN+NP= = MQ + QP.
- 760 Докажите, что для любых двух неколлинеарных векторов х и у справедливо неравенство | х + у |<| х |+| у |.
- 761 Докажите, что если А, В, С и D — произвольные точки, то AB + BC + CD + DA= 0.
- 762 Сторона равностороннего треугольника ABC равна а. Найдите: а) |AB+BC|; б) |АВ+АС|; в) |AB+CB|; г)|BA-BC|; д)|АВ-АС|.
- 763 В треугольнике АВС АВ=6, ВС=8, ∠B=90°. Найдите: а) |ВА|-|ВС| и |ВА- ВС|; б)|АВ|+|ВС| и |AB+ВС|; в)|ВА|+|ВС| и |ВА + ВС|; г) |АВ|-|ВС| и |АВ-ВС|.
- 764 Пользуясь правилом многоугольника, упростите выражения: а) (АВ + ВС -МС) + (MD-KD); б) (СВ+АС +BD) - (MK+KD).
- 765 Пусть X, Y и Z— произвольные точки. Докажите, что векторы р =XY+ZX + YZ, q = (XY-XZ) + YZ и r = (ZY-XY) - ZX нулевые.
- 766 На рисунке 259 изображены векторы а, b , с , d , XY. Представьте вектор XY в виде суммы остальных или им противоположных векторов.
- 767 Дан треугольник ABC. Выразите через векторы а=АВ и b=АС следующие векторы: а) ВА; б) СВ; в) СВ+ВА.
- 768 Точки М и N — середины сторон АВ и АС треугольника ABC. Выразите векторы ВМ, NC, MN, BN через векторы а=АМ и b=AN.
- 769 Отрезок ВВ1 — медиана треугольника ABC. Выразите векторы B1C, ВВ1, ВА, ВС через х =АВ1 и у=АВ.
- 770 Дан параллелограмм ABCD. Выразите вектор АС через векторы а и b , если: а) а=АВ, b=BC;б) а =СВ, b=CD; в) а =АВ, b = DA.
- 771 В параллелограмме ABCD диагонали пересекаются в точке О. Выразите через векторы а=АВ и b=AD векторы: DC + CB, ВО+ОС, ВО-ОС, BA-DA.
- 772 Дан параллелограмм ABCD. Докажите, что ХА+ХС=XB+XD, где X— произвольная точка плоскости.
- 773 Докажите, что для любых двух векторов х и у справедливо неравенство | х - у | ≤ | х |+| у |. В каком случае |х-у| = |х|+|у|?
- 774 Парашютист спускался на землю со скоростью 3 м/с. Порывом ветра его начинает относить в сторону со скоростью 3√3 м/с. Под каким углом к вертикали спускается парашютист?
Глава IX. Векторы. §3. Умножение вектора на число.
- 775 Начертите два неколлинеарных вектора р и q , начала которых не совпадают, и отметьте какую-нибудь точку О. От точки О отложите векторы, равные 2 р и ½q
- 776 Начертите два неколлинеарных вектора х и у и постройте векторы: a) x+2y; б) ½y + х; в) 3x+½y; г) 1½x-3у; д)0х + 4у; е) -2х + 0у . Выполните задания а) — е) для двух коллинеарных ненулевых векторов x и y.
- 777 Начертите два неколлинеарных вектора р и q , начала которых не совпадают. Постройте векторы m=2p-½q, n=p+3q, l=-2p-½q, s=⅔q-p.
- 778 Начертите попарно неколлинеарные векторы а, b и c. Постройте векторы: а) 2а + 3b - 4c; б) ½a-b+⅓c.
- 779 Дан вектор р = 3а , где а ≠ 0. Напишите, как направлен каждый из векторов а , -а , ½а, -2а, 6а по отношению к вектору р , и выразите длины этих векторов через |р|.
- 780 Докажите, что для любого вектора а справедливы равенства: а) 1 • а = а ; б) (-1) • а = —а.
- 781 Пусть х = m+n , у =m-n . Выразите через m и n векторы: а) 2х - 2у ; б) 2x + ½у ; в)-x-⅓y.
- 782 В параллелограмме ABCD точка Е — середина стороны AD, точка G — середина стороны ВС. Выразите векторы ЕС и AG через векторы DC = а и ВС = b .
- 783 Точка М лежит на стороне ВС параллелограмма ABCD, причем ВМ:МС=3:1. Выразите векторы AM и MD через векторы а = AD и b=АВ.
- 784 В паралеллограмме ABCD диагонали пересекаются в точке О, а М— точка на стороне AD, такая, что AM=½MD. Выразите через векторы х =AD, у =АВ следующие векторы: а) АС , АО ,СО, DO, AD+BC, AD+CO, СО+ОА; б) AM, МС, ВМ, ОМ.
- 785 Точки М и N — середины диагоналей АС и BD четырехугольника ABCD. Докажите, что MN=½(AD+CB).
- 786 Отрезки AA1, ВВ1 и СС1 — медианы треугольника ABC. Выразите векторы AA1, BB1, СС1 через векторы а =АС и b =АВ.
- 787 Точка О — середина медианы EG треугольника DEF. Выразите вектор DO через векторы a=ED и b =EF.
- 788 Дан произвольный треугольник ABC. Докажите, что существует треугольник, стороны которого соответственно параллельны и равны медианам треугольника ABC.
Глава IX. Векторы. Применение векторов к решению задач
- 789 На сторонах треугольника ABC построены параллелограммы АВВ1А2, ВСС1В2, ACC2A1. Докажите, что существует треугольник, стороны которого соответственно параллельны и равны отрезкам А1А2, В1В2 и C1C2.
- 790 Докажите, что отрезок, соединяющий середины диагоналей трапеции, параллелен ее основаниям и равен полуразности оснований.
- 791 Докажите, что отрезки, соединяющие середины противоположных сторон произвольного четырехугольника, точкой пересечения делятся пополам.
- 792 Докажите теорему о средней линии треугольника (п. 62).
Глава IX. Векторы. Средняя линия трапеции
- 793 Боковые стороны трапеции равны 13 см и 15 см, а периметр равен 48 см. Найдите среднюю линию трапеции.
- 794 Сторона АВ треугольника ABC разделена на четыре равные части и через точки деления проведены прямые, параллельные стороне ВС. Стороны АВ и АС треугольника отсекают на этих параллельных прямых три отрезка, наименьший из которых равен 3,4. Найдите два д
- 795 Найдите диаметр окружности, если его концы удалены от некоторой касательной на 18 см и 12 см.
- 796 Из концов диаметра CD данной окружности проведены перпендикуляры СС1 и DD1 к касательной, не перпендикулярной к диаметру CD. Найдите DD1, если СС1=11 см, a CD = 27 см.
- 797 Докажите, что средняя линия трапеции проходит через середины диагоналей.
- 798 Боковая сторона равнобедренной трапеции равна 48 см, а средняя линия делится диагональю на два отрезка, равные 11 см и 35 см. Найдите углы трапеции.
- 799 Дана равнобедренная трапеция ABCD. Перпендикуляр, проведенный из вершины В к большему основанию AD, делит это основание на два отрезка, больший из которых равен 7 см. Найдите среднюю линию трапеции.
Глава IX. Векторы. Дополнительные задачи
- 800 Докажите, что если векторы m и n сонаправлены, то |m+n|=|m|+ |n|, а если тип противоположно направлены, причем |m| ≥|n|, то |m+n| = |m|-|n|.
- 801 Докажите, что для любых векторов х и у справедливы неравенства |х|-|у|≤|х + у|≤|х| + |у|.
- 802 На стороне ВС треугольника ABC отмечена точка N так, что BN=2NC. Выразите вектор AN через векторы а=ВА и b=ВС.
- 803 На сторонах MN и NP треугольника MNP отмечены соответственно точки X и Y так, что MX/XN=2/3 и NY/YP=3/2. Выразите векторы XY и МР через векторы a = NM и b=NP.
- 804 В трапеции ABCD основание AD в три раза больше основания ВС. На стороне AD отмечена точка К, такая, что АК=⅓AD. Выразите векторы СК, KD и ВС через векторы а =ВА и b=CD.
- 805 Три точки А, В и С расположены так, что ВС = ½ АВ. Докажите, что для любой точки О справедливо равенство ОВ = ⅓ОА + ⅔ОС .
- 806 Точка С делит отрезок АВ в отношении m : n, считая от точки А. Докажите, что для любой точки О справедливо равенство OC=n/(m+n) OA + m/(m+n) OB..
- 807 Пусть AA1, ВВ1 и СС1 — медианы треугольника ABC, О — произвольная точка. Докажите, что ОА + ОВ + OC= OA1+OB1+OC1.
- 808* Точки А и С — середины противоположных сторон произвольного четырехугольника, а точки B и D — середины двух других его сторон. Докажите, что для любой точки О верно равенство OA + OC = OB + OD.
- 809 В прямоугольной трапеции один из углов равен 120°. Найдите ее среднюю линию, если меньшая диагональ и большая боковая сторона трапеции равны а.
- 810 Докажите, что вершина угла, образованного биссектрисами двух углов трапеции, прилежащих к боковой стороне, лежит на прямой, содержащей среднюю линию трапеции.
Глава V. Четырехугольники. Задачи повышенной трудности
- 811 Дан выпуклый шестиугольник А1А2А3А4А5А6, все углы которого равны. Докажите, что А1А2-А4А5=А5А6-A2A3=A3A4 -A6A1.
- 812 Положительные числа a1, а2, а3, а4, а5 и а6 удовлетворяют условиям а1- а4=а5- а2 = a3 - a6.Докажите, что существует выпуклый шестиугольник А1А2А3А4А5А6, все углы которого равны, причем А1А2=а1,А2А3=a2, A3A4=a3, А4A5=а4, А5А6=а5 и А6A1=а6.
- 813 Докажите, что из одинаковых плиток, имеющих форму произвольного выпуклого четырехугольника, можно сделать паркет, полностью покрывающий любую часть плоскости.
- 814 Докажите, что диагонали выпуклого четырехугольника пересекаются.
- 815 Докажите, что в любом четырехугольнике какие-то две противоположные вершины лежат по разные стороны от прямой, проходящей через две другие вершины.
- 816 В равнобедренном треугольнике ABC с основанием АС проведена биссектриса AD. Прямая, проведенная через точку D перпендикулярно к AD, пересекает прямую АС в точке Е. Точки М и К — основания перпендикуляров, проведенных из точек В и D к прямой АС. Найдит
- 817 Докажите, что в треугольнике сумма трех медиан меньше периметра, но больше половины периметра.
- 818 Диагонали выпуклого четырехугольника разбивают его на четыре треугольника, периметры которых равны. Докажите, что этот четырехугольник — ромб.
- 819 Найдите множество середин всех отрезков, соединяющих данную точку со всеми точками данной прямой, не проходящей через эту точку.
- 820 Докажите, что прямая, проходящая через середины оснований равнобедренной трапеции, перпендикулярна к основаниям. Сформулируйте и докажите обратное утверждение.
- 821 При пересечении биссектрис всех углов прямоугольника образовался четырехугольник. Докажите, что этот четырехугольник — квадрат.
- 822 На сторонах параллелограмма вне его построены квадраты. Докажите, что точки пересечения диагоналей этих квадратов являются вершинами квадрата.
- 823 На стороне CD квадрата ABCD отмечена точка М. Биссектриса угла ВАМ пересекает сторону ВС в точке К. Докажите, что AM = ВК + DM.
- 824 На рисунке 268 изображены три квадрата. Найдите сумму ∠BAE +∠CAE +∠DAE.
- 825 Внутри квадрата ABCD взята точка М, такая, что ∠MAB = 60°, ∠MCD= 15°. Найдите ∠MBC.
- 826 На сторонах треугольника ABC во внешнюю сторону построены квадраты BCDE, АСТМ, BAHK, а затем параллелограммы TCDQ и ЕВКР. Докажите, что треугольник APQ прямоугольный и равнобедренный.
- 827 Постройте равнобедренную трапецию по основаниям и диагоналям.
- 828 Докажите, что если треугольник имеет: а) ось симметрии, то он равнобедренный; б) более чем одну ось симметрии, то он равносторонний.
Глава VI. Площадь. Задачи повышенной трудности
- 829 Через точку М, лежащую внутри параллелограмма ABCD, проведены прямые, параллельные его сторонам и пересекающие стороны АВ, ВС, CD и DA соответственно в точках Р, Q, R и Т. Докажите, что если точка М лежит на диагонали АС, то площади параллелограммов M
- 830 На сторонах АС и ВС треугольника ABC взяты соответственно точки М и К. Отрезки АХ и ВМ пересекаются в точке О. Найдите площадь треугольника СМК, если площади треугольников ОМА, ОАВ и OBK равны соответственно S1, S2, S3.
- 831 На сторонах АС и ВС треугольника ABC взяты точки М и X, а на отрезке MK — точка Р так, что AM/MC=CK/KB=MP/PK. Найдите площадь треугольника ABC, если площади треугольников АМР и ВКР равны S1 и S2.
- 832 Точки Р, Q, R и Т соответственно середины сторон АВ, ВС, CD и DA параллелограмма ABCD. Докажите, что при пересечении прямых AQ, BR, СТ и DР образуется параллелограмм, и найдите отношение его площади к площади параллелограмма ABCD.
- 833 Докажите, что площадь трапеции равна произведению одной из боковых сторон на перпендикуляр, проведенный из середины другой боковой стороны к прямой, содержащей первую боковую сторону.
- 834 В трапеции ABCD с основаниями ВС и AD диагонали пересекаются в точке О. Площади треугольников ВОС и AOD равны S1 и S2. Найдите площадь трапеции.
- 835 Через концы меньшего основания трапеции проведены две параллельные прямые, пересекающие большее основание. Диагонали трапеции и эти прямые делят трапецию на семь треугольников и один пятиугольник. Докажите, что площадь пятиугольника равна сумме площад
- 836 Прямая, проходящая через середины диагоналей АС и BD четырехугольника ABCD, пересекает стороны АВ и CD в точках М и К. Докажите, что площади треугольников DCM и АKВ равны.
- 837 Сторона АВ параллелограмма ABCD продолжена за точку В на отрезок BE, а сторона AD продолжена за точку D на отрезок DK. Прямые ED и КВ пересекаются в точке О. Докажите, что площади четырехугольников ABOD и СЕОК равны.
- 838 Два непересекающихся отрезка делят каждую из двух противоположных сторон выпуклого четырехугольника на три равные части. Докажите, что площадь той части четырехугольника, которая заключена между этими отрезками, в три раза меньше площади самого четыре
- 839 Середины К и М сторон АВ и DC выпуклого четырехугольника ABCD соединены отрезками KD, КС, МА и MB с вершинами. Докажите, что площадь четырехугольника, заключенного между этими отрезками, равна сумме площадей двух треугольников, прилежащих к сторонам A
- 840 Точка А лежит внутри угла, равного 60°. Расстояния от точки А до сторон угла равны a и b. Найдите расстояние от точки А до вершины угла.
- 841 Прямая, проходящая через вершину С параллелограмма ABCD, пересекает прямые АВ и AD в точках К и М. Найдите площадь этого параллелограмма, если площади треугольников КВС и CDM равны соответственно S1 и S2.
- 842 Через точку пересечения диагоналей четырехугольника ABCD проведена прямая, пересекающая отрезок АВ в точке М и отрезок CD в точке К. Прямая, проведенная через точку К параллельно отрезку АВ, пересекает отрезок BD в точке Т, а прямая, проведенная через
- 843 Сторона АВ треугольника ABC продолжена за точку А на отрезок AD, равный АС. На лучах ВА и ВС взяты точки К и М так, что площади треугольников BDM и ВСК равны. Найдите угол ВКМ, если ∠BAC = α.
- 844 Внутри прямоугольника ABCD взята точка М. Известно, что МВ = а, МС = b и MD = c. Найдите длину отрезка МА.
- 845 В треугольнике ABC проведена высота BD. Отрезок КА перпендикулярен к отрезку АВ и равен отрезку DC, отрезок СМ перпендикулярен к отрезку ВС и равен отрезку AD. Докажите, что отрезки MB и КВ равны.
- 846 Внутри прямоугольного треугольника ABC с прямым углом С взята точка О так, что справедливо равенства SOAB= SOAC= SOBC. Докажите, что справедливо равенство ОА2 + ОВ2= 5OС2.
Глава VII. Подобные треугольники. Задачи повышенной трудности
- 847 На рисунке 269 изображен правильный пятиугольник ABCDE, т. е. выпуклый пятиугольник, у которого все углы равны и все стороны равны. Докажите, что:
- 848 В треугольнике ABC (AB≠AC) через середину М стороны ВС проведена прямая, параллельная биссектрисе угла А, которая пересекает прямые АВ и АС соответственно в точках D и Е. Докажите, что BD = CE.
- 849 Докажите, что отрезки, соединяющие основания высот остроугольного треугольника, образуют треугольник, в котором эти высоты являются биссектрисами.
- 850 Точки Е и F лежат на стороне АВ треугольника ABC, причем так, что точка Е лежит на отрезке AF и AE=BF. Прямая, проведенная через точку Е параллельно стороне АС, пересекает прямую, проведенную через точку F параллельно стороне ВС, в точке К. Докажите,
- 851 Гипотенуза прямоугольного треугольника является стороной квадрата, не перекрывающегося с этим треугольником. Найдите расстояние от точки пересечения диагоналей квадрата до вершины прямого угла треугольника, если сумма катетов равна а.
- 852 В треугольнике ABC ∠A= 180°/7 и ∠B = 360°/7. Докажите, что
- 853 Из точки М внутренней области угла АОВ проведены перпендикуляры МР и MQ к его сторонам ОА и ОВ. Из точек Р и Q проведены перпендикуляры PR и QS соответственно к ОВ и ОА. Докажите, что RS⊥OM.
- 854 В равнобедренном треугольнике ABC из середины D основания АС проведен перпендикуляр DH к стороне ВС. Пусть М — середина отрезка DH. Докажите, что ВМ⊥АН.
- 855 В прямоугольном треугольнике ABC из вершины прямого угла С проведен перпендикуляр CD к гипотенузе, а из точки D — перпендикуляры DE и DF к катетам АС и ВС. Докажите, что:
- 856 В выпуклом четырехугольнике ABCD диагонали пересекаются в точке Р. а) Найдите все углы четырехугольника. б) Докажите, что AB2=BP⋅BD. Известно, что
- 857 Точка М не лежит на прямых, содержащих стороны параллелограмма ABCD. Докажите, что существуют точки N, Р и Q, расположенные так, что А, B, С и D являются соответственно серединами отрезков MN, NP, PQ и QM.
- 858 Докажите, что если противоположные стороны выпуклого четырехугольника не параллельны, то их полусумма больше отрезка, соединяющего середины двух других противоположных сторон.
- 859 Докажите, что если сумма расстояний между серединами противоположных сторон выпуклого четырехугольника равна половине его периметра, то этот четырехугольник — параллелограмм.
- 860 Докажите, что если отрезок, соединяющий середины двух противоположных сторон выпуклого четырехугольника, равен полусумме двух других сторон, то этот четырехугольник — трапеция или параллелограмм.
- 861 Диагонали трапеции ABCD пересекаются в точке О. Треугольник АВО, где АВ — меньшее основание трапеции, равносторонний. Докажите, что треугольник, вершинами которого являются середины отрезков ОА, OD и ВС, равносторонний.
- 862 Из вершины А треугольника ABC проведены перпендикуляры AM и АК к биссектрисам внешних углов этого треугольника при вершинах B и С. Докажите, что отрезок МК равен половине периметра треугольника ABC.
- 863 Отрезки AA1, ВВ1 и СС1 соединяют вершины треугольника ABC с внутренними точками противоположных сторон. Докажите, что середины этих отрезков не лежат на одной прямой.
- 864 Середины трех высот треугольника лежат на одной прямой. Докажите, что этот треугольник прямоугольный.
- 865 В треугольнике ABC, сторона АС которого в два раза больше стороны BC, проведены биссектриса СМ и биссектриса внешнего угла при вершине С, пересекающая прямую АВ в точке К. Докажите,что
- 866 Стороны треугольника EFG соответственно равны медианам треугольника ABC. Докажите, что
- 867 В треугольнике ABC прямая, проходящая через вершину А и делящая медиану ВМ в отношении 1:2, считая от вершины, пересекает сторону ВС в точке К. Найдите отношение площадей треугольников АВК и ABC.
- 868 Через вершину А параллелограмма ABCD проведена прямая, пересекающая прямые BD, CD и ВС соответственно в точках М, N и Р. Докажите, что отрезок AM является средним пропорциональным между MN и МР.
- 869 Постройте точку, принадлежащую большему основанию равнобедренной трапеции и отстоящую от данной боковой стороны в n раз дальше, чем от другой (n=2, 3, 4).
- 870 Точка С лежит на отрезке AB. Постройте точку D прямой AB, не лежащую на отрезке AB, так, чтобы AD/DB=AC/CB. Всегда ли задача имеет решение?
- 871 Постройте равнобедренный треугольник по углу между боковыми сторонами и сумме основания и высоты, проведенной к основанию.
- 872 Постройте треугольник по двум сторонам и биссектрисе угла между ними.
- 873 Постройте треугольник ABC, если даны ∠A, ∠C и отрезок, равный сумме стороны АС и высоты ВН.
- 874 Постройте треугольник по трем высотам.
- 875 Постройте трапецию по боковой стороне, большему основанию, углу между ними и отношению двух других сторон.
- 876 Постройте ромб, площадь которого равна площади квадрата, если известно, что отношение диагоналей этого ромба равно отношению данных отрезков.
Глава VIII. Окружность. Задачи повышенной трудности
- 877 Две окружности имеют единственную общую точку М. Через эту точку проведены две секущие, пересекающие одну окружность в точках А и A1, а другую — в точках В и Bг Докажите, что АА1||ВВ1.
- 878 Прямая АС — касательная к окружности с центром O1, а прямая BD — касательная к окружности с центром O2 (рис. 270). Докажите, что: a) AD||BC; б) AB2=AD⋅BC; в)BD2:AC2=AD:BC.
- 879 Точки B1 и С1 — середины дуг АВ и АС (рис. 271). Докажите, что AM=AN.
- 880 Окружность отсекает на двух прямых, которые пересекаются в точке, не лежащей на окружности, равные хорды. Докажите, что расстояния от точки пересечения этих прямых до концов той и другой хорды соответственно равны между собой.
- 881 Докажите, что для всех хорд АВ данной окружности величина AB2/AD, где AD — расстояние от точки А до касательной в точке В, имеет одно и то же значение.
- 882 Через точку А пересечения двух окружностей с центрами в точках О1 и O2 проведена прямая, пересекающая одну окружность в точке В, а другую — в точке С. Докажите, что отрезок ВС будет наибольшим тогда, когда он параллелен прямой O1O2.
- 883 Отрезок АВ является диаметром окружности с центром О. На каждом радиусе ОМ окружности отложен от центра О отрезок, равный расстоянию от конца М этого радиуса до прямой АВ. Найдите множество концов построенных таким образом отрезков.
- 884 Внутри угла ABC равностороннего треугольника ABC взята точка М так, что ∠BMC=30°, ∠BMA= 17°. Найдите углы ВАМ и ВСМ.
- 885 Через каждую вершину треугольника ABC проведена прямая, перпендикулярная к биссектрисе угла треугольника при этой вершине. Проведенные прямые, пересекаясь, образуют новый треугольник. Докажите, что вершины этого треугольника лежат на прямых, содержащи
- 886 Пусть Н — точка пересечения прямых, содержащих высоты треугольника ABC, а А', В', С' — точки, симметричные точке Н относительно прямых ВС, СА, АВ. Докажите, что точки А', В', С' лежат на окружности, описанной около треугольника ABC.
- 887 Отрезок BD — биссектриса треугольника ABC. Докажите, что BD2=AB⋅ВС - AD⋅DC.
- 888 В треугольнике ABC из вершины В проведены высота ВН и биссектриса угла B, которая пересекает в точке Е описанную около треугольника окружность с центром О. Докажите, что луч BE является биссектрисой угла ОВН.
- 889 Произвольная точка X окружности, описанной около равностороннего треугольника ABC, соединена отрезками с его вершинами. Докажите, что один из отрезков АХ, ВХ и СХ равен сумме двух других отрезков.
- 890 Докажите, что если диагонали вписанного четырехугольника перпендикулярны, то сумма квадратов противоположных сторон четырехугольника равна квадрату диаметра описанной окружности.
- 891 В четырехугольнике ABCD, вписанном в окружность, биссектрисы углов А и В пересекаются в точке, лежащей на стороне CD. Докажите, что СD=BC+AD.
- 892 Докажите, что площадь прямоугольной трапеции, описанной около окружности, равна произведению ее оснований.
- 893 Докажите, что в любом четырехугольнике, вписанном в окружность, произведение диагоналей равно сумме произведений противоположных сторон (теорема Птолемея).
- 894 Докажите, что в любом треугольнике радиус R описанной окружности, радиус r вписанной окружности и расстояние d между центрами этих окружностей связаны равенством d2=R2-2Rr (формула Эйлера).
- 895 Для неравностороннего треугольника ABC точка О является центром описанной окружности, Н— точка пересечения прямых, содержащих высоты AA1, ВВ1 и СС1, точки А2, B2, С2 — середины отрезков АН, ВН, СН, а точки А3, B3, С3 — середины сторон треугольника ABC
- 896 Докажите, что основания перпендикуляров, проведенных из произвольной точки окружности, описанной около треугольника, к прямым, содержащим стороны этого треугольника, лежат на одной прямой (прямая Симпсона).
- 897 Постройте общую касательную к двум данным окружностям.
- 898 Даны окружность с центром О, точка М и отрезки P1Q1 и P2Q2. Постройте прямую р так, чтобы окружность отсекала на ней хорду, равную P1Q1, и расстояние от точки М до прямой р равнялось P2Q2.
- 899 Внутри окружности дана точка. Постройте хорду, проходящую через эту точку, так, чтобы она была наименьшей из всех хорд, проходящих через эту точку.
- 900 Постройте треугольник: а) по стороне, противолежащему углу и высоте, проведенной к данной стороне; б) по углу, высоте, проведенной из вершины данного угла, и периметру.
- 901 Постройте треугольник, если дана описанная окружность и на ней точки Н, В и М, через которые проходят прямые, содержащие высоту, биссектрису и медиану треугольника, проведенные из одной вершины.
- 902 Даны три точки, не лежащие на одной прямой. Постройте треугольник, для которого эти точки являются основаниями высот. Сколько решений имеет задача?
- 903 Докажите основные свойства умножения вектора на число (п. 83).
Глава IX. Векторы. Задачи повышенной трудности
- 904 Даны четырехугольник MNPQ и точка О. Что представляет собой данный четырехугольник, если ON-OM=OP-OQ?
- 905 Даны четырехугольник ABCD и точка О. Точки Е, F, G и Н симметричны точке О относительно середин сторон АВ, ВС, CD и DA соответственно. Что представляет собой четырехугольник EFGH?
- 906 Дан треугольник ABC. Докажите, что вектор AB/|AB|+AC+|AC| направлен вдоль биссектрисы угла А, а вектор AB/|AB|-AC/|AC| — вдоль биссектрисы внешнего угла при вершине А.
- 907 Докажите следующее утверждение: три точки А, В и С лежат на одной прямой тогда и только тогда, когда существуют числа k, I и m, одновременно не равные нулю, такие, что k + l + m = 0 и для произвольной точки О выполняется равенство kOA+lOB +mОС = 0.
- 908 Используя векторы, докажите, что середины диагоналей четырехугольника и точка пересечения отрезков, соединяющих середины противоположных сторон, лежат на одной прямой.
- 909 Биссектрисы внешних углов треугольника ABC при вершинах А, В и С пересекают прямые ВС, СА и АВ соответственно в точках A1, В1 и C1. Используя векторы, докажите, что точки A1, В1 и С1 лежат на одной прямой.
- 910 Пусть Н — точка пересечения прямых, содержащих высоты неравностороннего треугольника ABC, а О — центр описанной около этого треугольника окружности. Используя векторы, докажите, что точка G пересечения медиан треугольника принадлежит отрезку НО и дели
Комментарии