842 Через точку пересечения диагоналей четырехугольника ABCD проведена прямая, пересекающая отрезок АВ в точке М и отрезок CD в точке К. Прямая, проведенная через точку К параллельно отрезку АВ, пересекает отрезок BD в точке Т, а прямая, проведенная через точку М параллельно отрезку CD, пересекает отрезок АС в точке Е. Докажите, что прямые BE и СТ параллельны.
Решение. На рисунке 123 изображена данная фигура.
Так как треугольники ВОС и EOT имеют равные углы при вершине О, то
Источник:
Решебник
по
геометрии
за 8 класс (Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина, 2005 год),
задача №842
к главе «Глава VI. Площадь. Задачи повышенной трудности».
Комментарии