909 Биссектрисы внешних углов треугольника ABC при вершинах А, В и С пересекают прямые ВС, СА и АВ соответственно в точках A1, В1 и C1. Используя векторы, докажите, что точки A1, В1 и С1 лежат на одной прямой.

909 Биссектрисы внешних углов треугольника ABC при вершинах А, В и С пересекают прямые ВС, СА и АВ соответственно в точках A1, В1 и C1. Используя векторы, докажите, что точки A1, В1 и С1 лежат на одной прямой.

Решение. Пусть АВ = с, ВС = а, СА = b (рис. 343). Согласно задаче 619

Эти три равенства можно записать так:

или

Из последних трех равенств следует, что

Комментарии