Доказать: ΔAОD и ΔAОB -- равнобедренные.
Доказательство:
ABCD - прямоугольник, следовательно, по св-вам прямоугольника AC = BD, BО = ОD, AО = ОC, т.е. AО = ОC = ОB = ОD, значит ΔAОD и ΔAОB - равнобедренные (по определению), т. к. AО = ОD и AО = ОB.
Источник:
Решебник
по
геометрии
за 8 класс (Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина, 2005 год),
задача №402
к главе «Глава V. Четырехугольники. §3. Прямоугольник, ромб, квадрат».
Комментарии