Начните вводить часть условия (например, могут ли, чему равен или найти):
ГЛАВА X. Метод координат. §1 Координаты вектора
- 911 Найдите такое число k, чтобы выполнялось равенство n =km, если известно, что: а) векторы m и n противоположно направлены и |m|=0,5 см, |n| = 2 см; б) векторы m и n сонаправлены и |m| = 12 см, |n| = 24 дм; в) векторы m и n противоположно направлены и |
- 912 Диагонали параллелограмма ABCD пересекаются в точке О, М - середина отрезка АО. Найдите, если это возможно, такое число k, чтобы выполнялось равенство:
- 913 Векторы a и b коллинеарны. Коллинеарны ли векторы: а) а +3b и а; б) b-2а и a? Ответ обоснуйте.
- 914 Докажите, что если векторы а и 6 не коллинеарны, то: а) векторы a+b и a - b не коллинеарны; б) векторы 2а -b и а+b не коллинеарны; в) векторы а+b и а+3b не коллинеарны.
- 915 Точка М лежит на диагонали АС параллелограмма ABCD, причем AM: МС = 4:1. Разложите вектор AM по векторам а=АВ и b = AD.
- 916 Векторы а и b не коллинеарны. Найдите числа х и у, удовлетворяющие равенству: а) 3а-хb = уа + b; б) 4a-xa+5b + yb = 0; в) ха + 3b -yb = 0; г) a+b-3ya + xb=0.
- 917 Начертите прямоугольную систему координат Оху и координатные векторы i и j. Постройте векторы с началом в точке О, заданные координатами а{3; 0}, b{2; -1}, c{0; -3}, d {1; 1}, e{2; √2}
- 918 Разложите векторы а , b , с , d , е и f , изображенные на рисунке 276, а, б, в, по координатным векторам i и j и найдите их координаты.
- 919 Выпишите координаты векторов а =2 i +3j , b = -½i -2j , с =8i , d = i - j , e =-2j , f=-i .
- 920 Запишите разложение по координатным векторам i и j вектора: а) х {-3; ⅕) у {-2; -3}; в) z {-1; 0}; г) u {0; 3}; д) v {0; 1}.
- 921 Найдите числа х и у, удовлетворяющие условию: а) xi +yj =5i -2j ; б) -3i + уj =xi + 7j ; в) xi + yj = -4i ; r) xi + yj = 0.
- 922 Найдите координаты вектора a + b, если: a) a {3; 2}, b {2; 5}; 6) a {3; -4}, b{1; 5}; в) a{-4; -2}, b{5; 3}; r) a{2; 7}, b{-3; -7}.
- 923 Найдите координаты вектора а - b , если: а) а {5; 3}, b{2; 1}; б) a{3; 2}, b{-3; 2}; в) a{3; 6}, b{4; -3}; г) a{-5; -6}, b{2; -4}.
- 924 Найдите координаты векторов 2а,3а,-а,-3а, если a{3; 2}.
- 925 Даны векторы а {2; 4}, b {-2; 0}, с {0; 0}, d {-2; -3}, е {2; -3}, f {0, 5}. Найдите координаты векторов, противоположных данным.
- 926 Найдите координаты вектора v , если: a) v =3а-3b , а {2; -5}, b {-5; 2}; б) v =2а -3b+4с , а {4; 1}, b {1; 2}, с (2; 7); в) v=3а-2б-½с, а{-7; -1}, b{-1; 7}, с {4; -6}; г) v =a -b - c , а {7; -2}, b {2; 5}, с {-3; 3}.
- 927 Докажите, что если два вектора коллинеарны, то координаты одного вектора пропорциональны координатам другого. Сформулируйте и докажите обратное утверждение.
- 928 Даны векторы а {3; 7}, b {-2; 1}, с {6; 14}, d {2; -1}, е {2; 4}. Укажите среди этих векторов попарно кол-линеарные векторы.
ГЛАВА X. Метод координат. §2 Простейшие задачи в координатах
- 929 Точка А лежит на положительной полуоси Ох, а точка B — на положительной полуоси Оу. Найдите координаты вершин треугольника АВО, если: а) ОА = 5, OB=3; б) ОА=а, ОВ=b.
- 930 Точка А лежит на положительной полуоси Ох, а точка B — на положительной полуоси Оу. Найдите координаты вершин прямоугольника ОАСB, если: а) ОА=6,5, OB=3; б) ОА=а, OB = b.
- 931 Начертите квадрат MNPQ так, чтобы вершина Р имела координаты (-3; 3), а диагонали квадрата пересекались в начале координат. Найдите координаты точек М, N и Q.
- 932 Найдите координаты вершин равнобедренного треугольника ABC, изображенного на рисунке 281, если АВ = 2а, а высота СО равна h.
- 933 Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).
- 934 Найдите координаты вектора АВ, зная координаты его начала и конца: а) А (2; 7), B (-2; 7); б) А (-5; 1), B (-5; 27); в)А(-3; 0), B (0; 4); г)А(0; 3), B (-4; 0).
- 935 Перечертите таблицу в тетрадь, заполните пустые клетки и найдите х и y:
- 936 Перечертите таблицу в тетрадь и, используя формулы для вычисления координат середины М отрезка АВ, заполните пустые клетки:
- 937 Даны точки А (0; 1) и B (5; -3). Найдите координаты точек С и D, если известно, что точка В — середина отрезка АС, а точка D — середина отрезка ВС.
- 938 Найдите длины векторов: а) а {5; 9}; б) b {-3; 4}; в) c{-10; -10}; г) d {10; 17); д) e{11; -11}; е) f{10; 0}.
- 939 Найдите расстояние от точки М (3; -2): а) до оси абсцисс; б) до оси ординат; в) до начала координат.
- 940 Найдите расстояние между точками А и В, если: а) А (2; 7), В (-2; 7); б) А (-5; 1), В (-5; -7); в) А (-3; 0), В (0; 4); г) А(0; 3), В (-4; 0).
- 941 Найдите периметр треугольника MNP, если М (4; 0), N(12; -2), В (5; -9).
- 942 Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4), С (5; 2).
- 943 Точки В и С лежат соответственно на положительных полуосях Ох и Оу, а точка А лежит на отрицательной полуоси Ох, причем ОА=а, OB=b, OC=h. Найдите стороны АС и ВС треугольника ABC.
- 944 Вершина А параллелограмма ОАСВ лежит на положительной полуоси Ох, вершина В имеет координаты (b; с), а ОА=а. Найдите: а) координаты вершины С; б) сторону АС и диагональ СО.
- 945 Найдите сторону АС и диагональ ОС трапеции ОВСА с основаниями ОА=а и BC=d, если точка А лежит на положительной полуоси Ох, а вершина В имеет координаты (b; с).
- 946 Найдите х, если: а) расстояние между точками А (2; 3) и В (х; 1) равно 2; б) расстояние между точками М1(-1; х) и М2(2х; 3) равно 7.
- 947 Докажите, что треугольник ABC равнобедренный, и найдите его площадь, если вершины треугольника имеют координаты: а) А(0; 1), В (1; -4), С (5; 2); б) А (-4; 1), В (-2; 4), С(0; 1).
- 948 На оси ординат найдите точку, равноудаленную от точек: а) А (-3; 5) и В (6; 4); б) С (4; -3) и D (8; 1).
- 949 На оси абсцисс найдите точку, равноудаленную от точек: а) А (1; 2) и В (-3; 4); б) С (1; 1) и D (3; 5).
- 950 Докажите, что четырехугольник MNPQ является параллелограммом, и найдите его диагонали, если: а) М (1; 1), N (6; 1), Р (7; 4), Q (2; 4); б) М(-5; 1), N(-4; 4), Р (-1; 5), Q(-2; 2).
- 951 Докажите, что четырехугольник ABCD является прямоугольником, и найдите его площадь, если: а) А (-3; -1), В(1; -1), С (1; -3), В(-3; -3); б) А (4; 1), В (3; 5), С(-1; 4), В(0; 0).
- 952 Докажите, что середина гипотенузы прямоугольного треугольника равноудалена от всех его вершин.
- 953 Докажите, что сумма квадратов всех сторон параллелограмма равна сумме квадратов его диагоналей.
ГЛАВА X. Метод координат. §2. Применение метода координат к решению задач
- 954 Медиана, проведенная к основанию равнобедренного треугольника, равна 160 см, а основание треугольника равно 80 см. Найдите две другие медианы этого треугольника.
- 955 Высота треугольника, равная 10 см, делит основание на два отрезка, равные 10 см и 4 см. Найдите медиану, проведенную к меньшей из двух других сторон.
- 956 Докажите, что в равнобедренной трапеции диагонали равны. Сформулируйте и докажите обратное утверждение.
- 957 Докажите, что если диагонали параллелограмма равны, то параллелограмм является прямоугольником.
- 958 Дан прямоугольник ABCD. Докажите, что для произвольной точки М плоскости справедливо равенство AM2 + СМ2 = ВМ2 + DM2.
ГЛАВА X. Метод координат. §3 Уравнения окружности и прямой
- 959 Начертите окружность, заданную уравнением: а) х2+у2= 9; б) (x-1)2 + (y+2)2=4; в) (x+5)2+(y-3)2=25; г) (х-1)2+у2=4; д) х2+(y+2)2=2.
- 960 Какие из точек А (3; -4), В(1; 0), С(0; 5), D(0; 0) и Е (0; 1) лежат на окружности, заданной уравнением: а) x2+у2=25; б) (х-1)2+(у + 3)2 = 9; в) (x-½)2+y2=¼?
- 961 Окружность задана уравнением (x + 5)2 + (y-1)2= 16. Не пользуясь чертежом, укажите, какие из точек А (-2; 4), B (-5; -3), С (-7; -2) и D( 1; 5) лежат: а) внутри круга, ограниченного данной окружностью; б) на окружности; в) вне круга, ограниченного дан
- 962 Даны окружность х2 + у2 = 25 и две точки А(3; 4) и В (4; -3). Докажите, что АВ — хорда данной окружности.
- 963 На окружности, заданной уравнением х2+у2 = 25, найдите точки: а) с абсциссой -4; б) с ординатой 3.
- 964 На окружности, заданной уравнением (x-3)2 + + (y-5)2 = 25, найдите точки: а) с абсциссой 3; б) с ординатой 5.
- 965 Напишите уравнения окружностей с центром в начале координат и радиусами r1=3, r2= √2 , r3=5/2.
- 966 Напишите уравнение окружности радиуса r с центром А, если: а) А(0;5), r= 3; б) А(-1;2), r = 2; в) А (-3; -7), r=½; г) А (4; -3), r =10.
- 967 Напишите уравнение окружности с центром в начале координат, проходящей через точку В (-1; 3).
- 968 Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).
- 969 Напишите уравнение окружности с диаметром MN, если: а) М (-3; 5), N(7; -3); б) М(2; -1), N(4; 3).
- 970 Напишите уравнение окружности, проходящей через точку А (1; 3), если известно, что центр окружности лежит на оси абсцисс, а радиус равен 5. Сколько существует таких окружностей?
- 971 Напишите уравнение окружности, проходящей через точки А (-3; 0) и B (0; 9), если известно, что центр окружности лежит на оси ординат.
- 972 Напишите уравнение прямой, проходящей через две данные точки: а) А (1; -1) и В (-3; 2); б) С (2; 5) и D (5; 2); в) М (0; 1) и N (-4; -5).
- 973 Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнение прямой, содержащей медиану СМ.
- 974 Даны координаты вершин трапеции ABCD: А (-2; -2), В (-3; 1), С (7; 7) и D (3; 1). Напишите уравнения прямых, содержащих: а) диагонали АС и BD; б) среднюю линию трапеции.
- 975 Найдите координаты точек пересечения прямой 3x-4y + 12 = 0 с осями координат. Начертите эту прямую.
- 976 Найдите координаты точки пересечения прямых 4x + 3y-6 = 0 и 2х+у-4 = 0.
- 977 Напишите уравнения прямых, проходящих через точку М (2; 5) и параллельных осям координат.
- 978 Начертите прямую, заданную уравнением: а) у = 3; б) х = -2; в) у=-4; г) х = 7.
- 979 Найдите ординату точки М, лежащей на прямой AB, если известно, что А (-8; -6), В (-3; -1) и абсцисса точки М равна 5.
- 980 Напишите уравнения прямых, содержащих стороны ромба, диагонали которого равны 10 см и 4 см, если известно, что его диагонали лежат на осях координат.
ГЛАВА X. Метод координат. §3. Использование уравнений окружности и прямой при решении задач
- 981 Даны две точки А и B. Найдите множество всех точек, для каждой из которых расстояние от точки А в два раза больше расстояния от точки B.
- 982 Точка В — середина отрезка АС, длина которого равна 2. Найдите множество всех точек М, для каждой из которых: а) АМ2+ВМ2+СМ2= 50; б) АМ2+2BМ2+3CM2=4.
- 983 Даны две точки А и В. Найдите множество всех точек М, для каждой из которых AM2+BM2=k2, где k — данное число.
- 984 Даны две точки А и В. Найдите множество всех точек М, для каждой из которых AM2 - ВМ2=k, где k — данное число.
- 985 Даны две точки А и B. Найдите множество всех точек М, для каждой из которых ВМ2-АМ2= 2AB2 .
- 986 Дан прямоугольник ABCD. Найдите множество всех точек М, для каждой из которых
- 987* Дан ромб ABCD, диагонали которого равны 2а и 2b. Найдите множество всех точек М, для каждой из которых
ГЛАВА X. Метод координат. Дополнительные задачи
- 988 Векторы а и b не коллинеарны. Найдите такое число х (если это возможно), чтобы векторы р и q были коллинеарны: а) р = 2 а- b , q = а +хb; б) р = xа - b , q = а+хb; в) р = a + xb , q = а-2b; г) р = 2а + b, q=ха+ b.
- 989 Найдите координаты вектора р и его длину, если: а)р = 7а-3b, а{1;-1}, b{5;-2}; б)р = 4а-2b, а{6; 3}, b{5; 4}; в) р = 5 а-4 b , а{3/5;1/5}, b{6;-1}; г) р = 3(-2a-4b), а{1; 5}, b{-1; -1}.
- 990 Даны векторы а{3; 4}, b{6; -8}, с{1; 5}. а) Найдите координаты векторов р = а + b, q = b + с , r =2а- b + с , s = а- b - с . б) Найдите | а|, | b |, |р |, |q |.
- 991 Докажите, что расстояние между любыми двумя точками M1 (X1; 0) и М2 (х2; 0) оси абсцисс вычисляется по формуле d = |x1- x2|.
- 992 Докажите, что треугольник ABC, вершины которого имеют координаты А (4; 8), В (12; 11), С (7; 0), является равнобедренным, но не равносторонним.
- 993 Докажите, что углы А и С треугольника ABC равны, если А (-5; 6), В (3; -9) и С (-12; -17).
- 994 Докажите, что точка D равноудалена от точек А, В и С, если: a) D(1; 1), А (5; 4), В (4; -3), С (-2; 5); б) D (1; 0), А (7; -8), В (-5; 8), С (9; 6).
- 995 На оси абсцисс найдите точку, равноудаленную от точек М1(-2; 4) и М2 (6; 8).
- 996 Вершины треугольника ABC имеют координаты А (-5; 13), В (3; 5), С (-3; -1). Найдите: а) координаты середин сторон треугольника; б) медиану, проведенную к стороне АС; в) средние линии треугольника.
- 997 Докажите, что четырехугольник ABCD, вершины которого имеют координаты А (3; 2), В (0; 5), С (-3; 2), D (0; -1), является квадратом.
- 998 Докажите, что четырехугольник ABCD, вершины которого имеют координаты А (-2; -3), В (1; 4), С (8; 7), D (5; 0), является ромбом. Найдите его площадь.
- 999 Найдите координаты четвертой вершины параллелограмма по заданным координатам трех его вершин: (-4; 4), (-5; 1) и (-1; 5). Сколько решений имеет задача?
- 1000 Выясните, какие из данных уравнений являются уравнениями окружности. Найдите координаты центра и радиус каждой окружности: а) (х - 1)2 + (у + 2)2 = 25; б) x2 + (у + 7)2 = 1; в) х2 + у2 + 8x - 4у + 40 = 0; г) х2 + у2- 2х + 4у - 20 = 0; д) х2 + у2 - 4х
- 1001 Напишите уравнение окружности, проходящей через точки А (3; 0) и В (- 1; 2), если центр ее лежит на прямой у=х+2.
- 1002 Напишите уравнение окружности, проходящей через три данные точки: а) А ( 1; -4), В (4; 5), С (3; -2); б) А (3; -7), В (8; -2), С (6; 2).
- 1003 Вершины треугольника ABC имеют координаты А(-7; 5), В (3; -1), С (5; 3). Составьте уравнения: а) серединных перпендикуляров к сторонам треугольника; б) прямых АВ, ВС и СА; в) прямых, на которых лежат средние линии треугольника.
- 1004 Докажите, что прямые, заданные уравнениями 3x-1,5y+1=0 и 2х-у-3=0, параллельны.
- 1005 Докажите, что точки А, В и С лежат на одной прямой, если: а) А (-2; 0), В(3; 2½), С (6; 4); б) А(3; 10), В (3; 12), С (3; -6); в) А(1; 2), В (2; 5), С (-10; -31).
ГЛАВА X. Метод координат. Применение метода координат к решению задач
- 1006 Две стороны треугольника равны 17 см и 28 см, а высота, проведенная к большей из них, равна 15 см. Найдите медианы треугольника.
- 1007 Докажите, что отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований.
- 1008 Дан параллелограмм ABCD. Докажите, что для всех точек М величина (AM2 + СМ2) - (ВМ2 + DM2) имеет одно и то же значение.
- 1009 Докажите, что медиану АА1 треугольника ABC можно вычислить по формуле. Используя эту формулу, докажите, что если две медианы треугольника равны, то треугольник равнобедренный.
- 1010 Даны две точки А и В. Найдите множество всех точек М, для каждой из которых: а) 2AM2 - ВМ2 = 2АВ2; б) 2AM2 + 2ВМ2 = 6АВ2.
Глава XI. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов. §1 Синус, косинус и тангенс угла
- 1011 Ответьте на вопросы: а) Может ли абсцисса точки единичной полуокружности иметь значения 0,3; ⅓ -⅓ 1⅔ -2,8? б) Может ли ордината точки единичной полуокружности иметь значения 0,6; у; -0,3; 7; 1,002? Ответы обоснуйте.
- 1012 Проверьте, что точки М1(0; 1), M2(½;√3/2), M3(√2/2; √2/2), M4(-√3/2;½), А(1;0), В (-1; 0) лежат на единичной полуокружности. Выпишите значения синуса, косинуса и тангенса углов АОМ1, АОМ2, АОМ3, АОМ4, АОВ.
- 1013 Найдите sin α, если: а) cos α =½; б) cos α =-⅔; в) cos α = -1.
- 1014 Найдите cos α, если: а) sin α =√3/2; б) sin α = ¼ в) sin α=0.
- 1015 Найдите tg α, если: a) cos α = 1; б) cos α = -√3/2 ; в) sin α=√2/2 и 0°<α<90°; г) sin α = 3/5 и 90°<α<180°.
- 1016 Вычислите синусы, косинусы и тангенсы углов 120°, 135°, 150°.
- 1017 Постройте ∠А, если: a) sinA=⅔; б) cosA = ¾; в) cosA = -2/5.
- 1018 Угол между лучом ОА, пересекающим единичную полуокружность, и положительной полуосью Ох равен а. Найдите координаты точки А, если: а) ОА=3, α=45°; б) ОА= 1,5, α=90°; в) ОА=5, α=150°; г) ОА=1, α=180°; д) ОА=2, α=30°.
- 1019 Найдите угол между лучом ОА и положительной полуосью Ох, если точка А имеет координаты: а) (2; 2); б) (0; 3); в) (- √3; 1); г) (-2√2 ; 2√2).
Глава XI. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов. §2 Соотношения между сторонами и углами треугольника
- 1020 Найдите площадь треугольника ABC, если: а) АВ = = 6√8 см, АС=4 см, ∠А=60°; б) ВС=3 см, АВ = = 18√2 см, ∠B=45°; в) АС=14 см, СВ=7 см, ∠C=48°.
- 1021 Докажите, что площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.
- 1022 Площадь треугольника ABC равна 60 см2. Найдите сторону АВ, если АС= 15 см, ∠A=30°.
- 1023 Найдите площадь прямоугольника, диагональ которого равна 10 см, а угол между диагоналями равен 30°.
- 1024 Найдите площадь треугольника ABC, если: а) ∠A=α, а высоты, проведенные из вершин B и С, соответственно равны hb и hс; б) ∠А=α, ∠B=β, а высота, проведенная из вершины В, равна h.
- 1025 С помощью теорем синусов и косинусов решите треугольник ABC, если:
- 1026 В треугольнике ABC АС = 12 см, ∠A= 75°, ∠C=60°. Найдите АВ и SABC
- 1027 Найдите стороны треугольника ABC, если ∠A=45°, ∠C=30°, а высота AD равна 3 м.
- 1028 В параллелограмме ABCD AD=7⅓м, BD=4,4 м, ∠A=22°30'. Найдите ∠BDC и ∠DBC.
- 1029 Найдите биссектрисы треугольника, если одна из его сторон равна а, а прилежащие к этой стороне углы равны α и β.
- 1030 Смежные стороны параллелограмма равны а и b, а один из его углов равен α. Найдите диагонали параллелограмма и угол между ними.
- 1031 Выясните, является ли треугольник остроугольным, прямоугольным или тупоугольным, если его стороны равны: а) 5, 4 и 4; б) 17, 8 и 15; в) 9, 5 и 6.
- 1032 Две равные по величине силы приложены к одной точке под углом 72° друг к другу. Найдите величины этих сил, если величина их равнодействующей равна 120 кг.
- 1033 Докажите, что отношение стороны треугольника к синусу противолежащего угла равно диаметру описанной окружности.
- 1034 В равнобедренной трапеции меньшее основание равно боковой стороне, большее основание равно 10 см, а угол при основании равен 70°. Найдите периметр трапеции.
- 1035 В окружности проведены хорды АВ и CD, пересекающиеся в точке Е. Найдите острый угол между этими хордами, если АВ=13 см, СЕ = 9 см, ED=4 см и расстояние между точками В и D равно 4√3 см.
- 1036 Наблюдатель находится на расстоянии 50 м от башни, высоту которой хочет определить (рис. 298). Основание башни он видит под углом 2° к горизонту, а вершину — под углом 45° к горизонту. Какова высота башни?
- 1037 Для определения ширины реки отметили два пункта А и B на берегу реки на расстоянии 70 м друг от друга и измерили углы САВ и ABC, где С — дерево, стоящее на другом берегу у кромки воды. Оказалось, что ∠CAB= 12°30', ∠ABC=72°42'. Найдите ширину
- 1038 На горе находится башня, высота которой равна 100 м (рис. 299). Некоторый предмет А у подножия горы наблюдают сначала с вершины B башни под углом 60° к горизонту, а потом с ее основания С под углом 30°. Найдите высоту Н горы.
Глава XI. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов. §3 Скалярное произведение векторов
- 1039 Диагонали квадрата ABCD пересекаются в точке О. Найдите угол между векторами: а) АВ и АС ; б) АВ и DA; в) ОА и ОВ; г) АО и ОВ; д) ОА и ОС; е) АС и BD; ж) AD и DB; з) АО и ОС.
- 1040 Диагонали ромба ABCD пересекаются в точке О, и диагональ BD равна стороне ромба. Найдите угол между векторами: а) АВ и AD; б) АВ и DA; в) ВА и AD; г) ОС и OD; д) АВ и DA; е) АВ и CD.
- 1041 Вычислите скалярное произведение векторов а и b, если | а |=2, | b |=3, а угол между ними равен: а) 45°; б) 90°; в) 135°.
- 1042 В равностороннем треугольнике ABC со стороной а проведена высота BD. Вычислите скалярное произведение векторов: а) АВ• АС ; б) АС • СВ; в) АС• BD; г) АС • АС
- 1043 К одной и той же точке приложены две силы Р и Q, действующие под углом 120° друг к другу, причем |Р|=8, |Q| = 15. Найдите величину равнодействующей силы R.
- 1044 Вычислите скалярное произведение векторов а и b , если: а) a(¼ -1}, b{2; 3}; б) а{-5; 6}, b{6; 5}, в) а {1,5; 2}, b{4; -0,5}.
- 1045 Докажите, что ненулевые векторы а {х; у) и b {-у; x} перпендикулярны.
- 1046 Докажите, что векторы i +j и i-j перпендикулярны, если i и j — координатные векторы.
- 1047 При каком значении х векторы а и b перпендикулярны, если: а) а{4; 5}, b {х; -6}; б) а {x; -1}, b{3; 2}; в) а{0; -3}, b{5; x}?
- 1048 Найдите косинусы углов треугольника с вершинами А (2; 8), B(-1; 5), С(3; 1).
- 1049 Найдите углы треугольника с вершинами А (-1; √3), В(1;-√3 )иС(½; √3 ).
- 1050 Вычислите | а + b | и | а - b |, если | а | = 5, | b | = 8, аb = 60°.
- 1051 Известно, что а с =b с = 60°, | а | = 1, | 6 | = | с | = 2. Вычислите ( а + b ) • с .
- 1052 Вычислите скалярное произведение векторов р = а - b - с и q = а - b + с , если |а| = 5, |б| = 2, | с | = 4 и а ⊥ b .
- 1053 Вычислите скалярное произведение векторов а и b , если а= 3р - 2q и b = р + 4 q , где р и q — единичные взаимно перпендикулярные векторы.
Глава XI. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов. Применение скалярного произведения векторов к решению задач
- 1054 Докажите, что если AM — медиана треугольника ABC, то 4АМ2 = АВ2 + АС2 + 2АВ • АС • cos А. Пользуясь этой формулой, докажите, что медианы равнобедренного треугольника, проведенные к боковым сторонам, равны.
- 1055 Найдите угол, лежащий против основания равнобедренного треугольника, если медианы, проведенные к боковым сторонам, взаимно перпендикулярны.
- 1056 Докажите, что диагонали ромба взаимно перпендикулярны.
Глава XI. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов. Дополнительные задачи
- 1057 В равнобедренном треугольнике ABC АВ=АС=b, ∠А = 30°. Найдите высоты BE и AD, а также отрезки АЕ, ЕС, ВС.
- 1058 Найдите площадь треугольника ABC, если: а) ВС = 4,125 м, ∠B = 44°, ∠C = 72°; б) ВС = 4100 м, ∠A = 32°, ∠С = 120°.
- 1059 Докажите, что площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
- 1060 Используя теорему синусов, решите треугольник ABC, если:
- 1061 Используя теорему косинусов, решите треугольник ABC, если:
- 1062 В треугольнике DEF DE = 4,5 дм, EF=9,9 дм, DF=70 см. Найдите углы треугольника.
- 1063 Найдите биссектрису AD треугольника ABC, если ∠A = α, АВ = с, АС = b.
- 1064 Чтобы определить расстояние между точками А и B, которое нельзя измерить, выбирают третью точку С, из которой видны точки А и B. Измерив угол АСВ и расстояния АС и СВ, находят расстояние АВ. Найдите AB, если АС = b, СВ = а, ∠АСВ = α.
- 1065 Докажите, что треугольник с вершинами А (3; 0), B (1; 5) и С (2; 1) тупоугольный. Найдите косинус тупого угла.
- 1066 Найдите длину вектора a=3i -4j , где i и j — координатные векторы.
- 1067 Найдите диагонали параллелограмма, построенного на векторах а = 5р + 2q и b=p-3q , если |р| = 2√2 , | q | = 3 и p^q = 45°.
- 1068 При каком значении х векторы p=xa+17b и q = 3 а - b перпендикулярны, если | а | = 2, | b | = 5 и a^b=120°?
- 1069 В прямоугольном равнобедренном треугольнике проведены медианы из вершин острых углов. Найдите острый угол между этими медианами.
- 1070 В трапеции ABCD с основаниями AD = 16 см и ВС=8 см боковая сторона равна 4√7 см, a ∠ADC = 60°. Через вершину С проведена прямая l, делящая трапецию на два многоугольника, площади которых равны. Найдите площадь трапеции и длину отрезка прямо
- 1071 В треугольнике ABC, площадь которого равна 3√3 , угол А острый, АВ = 4√3 , АС = 3. Найдите радиус окружности, описанной около треугольника.
- 1072 Дан ромб MNPQ. Отрезок MF — биссектриса треугольника MPQ, ∠NMQ = 4α, FQ = а. Найдите площадь данного ромба.
- 1073 Четырехугольник ABCD задан координатами своих вершин: А(-1; 2), В( 1; -2), С (2; 0), D(1; 6). Докажите, что ABCD — трапеция, и найдите ее площадь.
- 1074 Точка М лежит на стороне ВС треугольника ABC и ВМ = kMC. Докажите, что
- 1075 В треугольнике ABC отрезок AD — биссектриса, AM — медиана, b = АС, с = АВ. Докажите, что:
- 1076 В параллелограмме диагонали взаимно перпендикулярны. Докажите, что этот параллелограмм является ромбом.
- 1077 Докажите, что коэффициент подобия двух подобных треугольников равен отношению радиусов окружностей: а) описанных около треугольников; б) вписанных в эти треугольники.
Глава XII. Длина окружности и площадь круга. §1 Правильные многоугольники
- 1078 Верно ли утверждение: а) любой правильный многоугольник является выпуклым; б) любой выпуклый многоугольник является правильным? Ответ обоснуйте.
- 1079 Какие из следующих утверждений верны: а) многоугольник является правильным, если он выпуклый и все его стороны равны; б) треугольник является правильным, если все его углы равны; в) любой равносторонний треугольник является правильным; г) любой четыр
- 1080 Докажите, что любой правильный четырехугольник является квадратом.
- 1081 Найдите углы правильного n-угольника, если: а) n=3; б) n = 5; в) n=6; г) n = 10; д) n = 18.
- 1082 Чему равна сумма внешних углов правильного n-угольника, если при каждой вершине взято по одному внешнему углу?
- 1083 Сколько сторон имеет правильный многоугольник, если каждый его угол равен: а) 60°; б) 90°; в) 135°; г) 150°?
- 1084 Сколько сторон имеет правильный вписанный многоугольник, если дуга описанной окружности, которую стягивает его сторона, равна: а) 60°; б) 30°; в) 90°; г) 36°; д) 18°; е) 72°?
- 1085 Докажите, что серединные перпендикуляры к любым двум сторонам правильного многоугольника либо пересекаются, либо совпадают.
- 1086 Докажите, что прямые, содержащие биссектрисы любых двух углов правильного многоугольника, либо пересекаются, либо совпадают.
- 1087 На рисунке 311, а изображен квадрат, вписанный в окружность радиуса R. Перечертите таблицу в тетрадь и заполните пустые клетки (а4 — сторона квадрата, Р — периметр квадрата, S — его площадь, r — радиус вписанной окружности).
- 1088 На рисунке 311, б изображен правильный треугольник, вписанный в окружность радиуса R. Перечертите таблицу в тетрадь и заполните пустые клетки (а3 — сторона треугольника, Р — периметр треугольника, S — его площадь, r — радиус вписанной окружности).
- 1089 Периметр правильного треугольника, вписанного в окружность, равен 18 см. Найдите сторону квадрата, вписанного в ту же окружность.
- 1090 Сечение головки газового вентиля имеет форму правильного треугольника, сторона которого равна 3 см. Каким должен быть минимальный диаметр круглого железного стержня, из которого изготовляют вентиль?
- 1091 Поперечное сечение деревянного бруска является квадратом со стороной 6 см. Найдите наибольший диаметр круглого стержня, который можно выточить из этого бруска.
- 1092 Около окружности описаны квадрат и правильный шестиугольник. Найдите периметр квадрата, если периметр шестиугольника равен 48 см.
- 1093 Около правильного треугольника описана окружность радиуса R. Докажите, что R=2r, где r — радиус окружности, вписанной в этот треугольник.
- 1094 Найдите площадь S правильного n-угольника, если: а) n = 4, R=3√2 см; б) n = 3, Р = 24 см; в) n = 6, r=9 см; г) n=8, r=5√3 см.
- 1095 Расстояние между параллельными гранями шестигранной головки болта, верхнее основание которого имеет форму правильного шестиугольника, равно 1,5 см. Найдите площадь верхнего основания.
- 1096 Стороны правильного треугольника, квадрата и правильного шестиугольника равны друг другу. Найдите отношения площадей этих многоугольников.
- 1097 Найдите отношение площадей двух правильных шестиугольников — вписанного в окружность и описанного около нее.
- 1098 Выразите сторону, периметр и площадь правильного треугольника: а) через радиус вписанной окружности; б) через радиус описанной окружности.
- 1099 Правильный восьмиугольник А1А2...А8 вписан в окружность радиуса R. Докажите, что четырехугольник A3A4A7A8 является прямоугольником, и выразите его площадь через R.
- 1100 С помощью циркуля и линейки в данную окружность впишите: а) правильный шестиугольник; б) правильный треугольник; в) квадрат; г) правильный восьмиугольник.
Глава XII. Длина окружности и площадь круга. §2 Длина окружности и площадь круга
- 1101 Перечертите таблицу и, используя формулу длины С окружности радиуса R, заполните пустые клетки таблицы. Воспользуйтесь значением π = 3,14.
- 1102 Как изменится длина окружности, если радиус окружности: а) увеличить в три раза; б) уменьшить в два раза; в) увеличить в k раз; г) уменьшить в k раз?
- 1103 Как изменится радиус окружности, если длину окружности: а) увеличить в k раз; б) уменьшить в k раз?
- 1104 Найдите длину окружности, описанной около: а) правильного треугольника со стороной а; б) прямоугольного треугольника с катетами а и b; в) равнобедренного треугольника с основанием а и боковой стороной 6; г) прямоугольника с меньшей стороной а и остры
- 1105 Найдите длину окружности, вписанной: а) в квадрат со стороной а; б) в равнобедренный прямоугольный треугольник с гипотенузой с; в) в прямоугольный треугольник с гипотенузой с и острым углом а; г) в равнобедренный треугольник с углом при основании а и
- 1106 Автомобиль прошел 989 м. Найдите диаметр колеса автомобиля, если известно, что оно сделало 500 оборотов.
- 1107 Метр составляет приближенно 1/40 000 000 часть земного экватора. Найдите диаметр Земли в километрах считая, что Земля имеет форму шара.
- 1108 Вычислите длину круговой орбиты искусственного спутника Земли, если спутник вращается на расстоянии 320 км от Земли, а радиус Земли равен 6370 км.
- 1109 Найдите длину дуги окружности радиуса 6 см, если ее градусная мера равна: а) 30°; б) 45°; в) 60°; г) 90°.
- 1110 Расстояние между серединами зубьев зубчатого колеса, измеренное по дуге окружности, равно 47,1 мм. Диаметр колеса равен 450 мм. Сколько зубьев имеет? колесо?
- 1111 Шлифовальный камень, имеющий форму диска, находится в защитном кожухе (рис. 316). Диаметр камня равен 58 см, дуга незащищенной его части равна 117°. Найдите длину дуги незащищенной части камня.
- 1112 Найдите длину маятника стенных часов, если угол его колебания составляет 38°, а длина дуги, которую описывает конец маятника, равна 24 см.
- 1113 Радиус закругления пути железнодорожного полотна равен 5 км, а длина дуги закругления — 400 м. Какова градусная мера дуги закругления?
- 1114 Перечертите таблицу и, используя формулу для площади S круга радиуса R, заполните пустые клетки. Воспользуйтесь значением π = 3,14.
- 1115 Как изменится площадь круга, если его радиус: а) увеличить в k раз; б) уменьшить в k раз?
- 1116 Найдите площадь круга, описанного около: а) прямоугольника со сторонами а и b; б) прямоугольного треугольника с катетом а и противолежащим углом а; в) равнобедренного треугольника с основанием а и высотой Л, проведенной к основанию.
- 1117 Найдите площадь круга, вписанного: а) в равносторонний треугольник со стороной а; б) в прямоугольный треугольник с катетом а и прилежащим к нему острым углом а; в) в равнобедренный треугольник с боковой стороной а и углом а, противолежащим основанию;
- 1118 Диаметр основания царь-колокола, находящегося в Московском Кремле, равен 6,6 м. Найдите площадь основания колокола.
- 1119 Длина окружности цирковой арены равна 41 м. Найдите диаметр и площадь арены.
- 1120 Найдите площадь кольца, ограниченного двумя окружностями с общим центром и радиусами R1 и R2, R1<R2. Вычислите площадь кольца, если R1=1,5 см, R2= 2,5 см.
- 1121 Какой толщины слой нужно снять с круглой медной проволоки, имеющей площадь сечения 314 мм2, чтобы она проходила сквозь отверстие диаметром 18,5 мм?
- 1122 Вокруг круглой клумбы, радиус которой равен 3 м, проложена дорожка шириной 1 м. Сколько нужно песка, чтобы посыпать дорожку, если на 1 м2 дорожки требуется 0,8 дм3 песка?
- 1123 Из круга радиуса r вырезан квадрат, вписанный в окружность, которая ограничивает круг. Найдите площадь оставшейся части круга.
- 1124 На мишени имеются четыре окружности с общим центром, радиусы которых равны 1, 2, 3 и 4. Найдите площадь наименьшего круга, а также площадь каждого из трех колец мишени.
- 1125 На сторонах прямоугольного треугольника как на диаметрах построены три полукруга. Докажите, что площадь полукруга, построенного на гипотенузе, равна сумме площадей полукругов, построенных на катетах.
- 1126 Из круга, радиус которого 10 см, вырезан сектор с дугой в 60°. Найдите площадь оставшейся части круга.
- 1127 Площадь сектора с центральным углом 72° равна S. Найдите радиус сектора.
- 1128 Сторона квадрата на рисунке 317 равна а. Вычислите площадь закрашенной фигуры.
Глава XII. Длина окружности и площадь круга. Дополнительные задачи
- 1129 Сколько сторон имеет правильный многоугольник, один из внешних углов которого равен: а) 18°; б) 40°; в) 72°; г) 60°?
- 1130 На стороне правильного треугольника, вписанного в окружность радиуса 3 дм, построен квадрат. Найдите радиус окружности, описанной около квадрата.
- 1131 Найдите периметр правильного шестиугольника A1A2A3A4A5A6, если A1A4 =2,24 см.
- 1132 Найдите отношение периметров правильного треугольника и квадрата: а) вписанных в одну и ту же окружность; б) описанных около одной и той же окружности.
- 1133 Диагонали А1А6 и А2А9 правильного двенадцатиугольника пересекаются в точке В (рис. 318). Докажите, что: а) треугольники А1А2В и А6А9В равносторонние; б) А1А6 = 2 r, где r — радиус вписанной в двенадцатиугольник окружности.
- 1134 Диагонали А1А4 и А2А7 правильного десятиугольника A1A2...A10, вписанного в окружность радиуса R, пересекаются в точке В (рис. 319). Докажите, что: а) А2А7 = 2R; б) А1А2В и ВА4O — подобные равнобедренные треугольники; в) А1А4-А1А2 = R.
- 1135 В круг, площадь которого равна 36π см2, вписан правильный шестиугольник. Найдите сторону этого шестиугольника и его площадь.
- 1136 Квадрат А1А2А3А4 вписан в окружность радиуса R (рис. 320). На его сторонах отмечены восемь точек так, что A1B1=A2B2=A3B3=A4B4=A1C1=A2C2= A3C3 = A4C4= R. Докажите, что восьмиугольник B1C3B2C4B3C1B4C2 правильный, и выразите площадь этого восьмиугольник
- 1137 За два оборота по круговой орбите вокруг Земли космический корабль проделал путь 84 152 км. На какой высоте над поверхностью Земли находится корабль, если радиус Земли равен 6370 км?
- 1138 Найдите длину окружности, вписанной в ромб, если: а) диагонали ромба равны 6 см и 8 см; б) сторона ромба равна а и острый угол равен α.
- 1139 Лесной участок имеет форму круга. Чтобы обойти этот участок по опушке, идя со скоростью 4 км/ч, нужно затратить на 45 мин больше, чем для того, чтобы пересечь его по диаметру. Найдите длину опушки данного участка.
- 1140 В правильный многоугольник вписана окружность. Докажите, что отношение площади круга, ограниченного этой окружностью, к площади многоугольника равно отношению длины окружности к периметру многоугольника.
- 1141 Фигура ограничена большими дугами двух окружно-стей, опирающимися на общую хорду, длина которой равна 6 см. Для одной окружности эта хорда является стороной вписанного квадрата, для другой — стороной правильного вписанного шестиугольника. Найдите сум
- 1142 Основания трапеции, около которой можно описать окружность, равны 4 см и 14 см, а одна из боковых сторон равна 13 см. Найдите длину описанной окружности.
- 1143 Высота прямоугольного треугольника, проведенная к гипотенузе, разделяет треугольник на два подобных треугольника (см. задачу 2, п. 63). Докажите, что отношение длин окружностей, вписанных в эти треугольники, равно коэффициенту подобия этих треугольни
Глава XII. Длина окружности и площадь круга. Задачи на построение
- 1144* Постройте правильный восьмиугольник, сторона которого равна данному отрезку.
- 1145* Даны два круга. Постройте круг, площадь которого равна сумме площадей данных кругов.
- 1146 Около данной окружности опишите: а) правильный треугольник; б) правильный шестиугольник.
- 1147 Около данной окружности опишите: а) правильный четырехугольник; б) правильный восьмиугольник.
Глава XIII Движения. §1 Понятие движения
- 1148 Докажите, что при осевой симметрии плоскости: а) прямая, параллельная оси симметрии, отображается на прямую, параллельную оси симметрии; б) прямая, перпендикулярная к оси симметрии, отображается на себя.
- 1149 Докажите, что при центральной симметрии плоскости: а) прямая, не проходящая через центр симметрии, отображается на параллельную ей прямую; б) прямая, проходящая через центр симметрии, отображается на себя.
- 1150 Докажите, что при движении угол отображается на равный ему угол.
- 1151 Докажите, что при движении параллельные прямые отображаются на параллельные прямые.
- 1152 Докажите, что при движении: а) параллелограмм отображается на параллелограмм; б) трапеция отображается на трапецию; в) ромб отображается на ромб; г) прямоугольник отображается на прямоугольник, а квадрат — на квадрат.
- 1153 Докажите, что при движении окружность отображается на окружность того же радиуса.
- 1154 Докажите, что отображение плоскости, при котором каждая точка отображается на себя, является наложением.
- 1155 ABC и А1В1С1 — произвольные треугольники. Докажите, что существует не более одного движения, при котором точки А, В и С отображаются в точки A1 ,B1, C1.
- 1156 В треугольниках ABC и А1В1С1 АВ=А1В1, AС=A1С1, ВС=В1С1. Докажите, что существует движение, при котором точки А, В и С отображаются в точки A1, В1 и C1, притом только одно.
- 1157 Докажите, что два параллелограмма равны, если смежные стороны и угол между ними одного параллелограмма соответственно равны смежным сторонам и углу между ними другого параллелограмма.
- 1158 Даны две прямые а и b. Постройте прямую, на которую отображается прямая b при осевой симметрии с осью а.
- 1159 Даны прямая а и четырехугольник ABCD. Постройте фигуру F, на которую отображается данный четырехугольник при осевой симметрии с осью а. Что представляет собой фигура F?
- 1160 Даны точка О и прямая b. Постройте прямую, на которую отображается прямая b при центральной симметрии с центром О.
- 1161 Даны точка О и треугольник ABC. Постройте фигуру F, на которую отображается треугольник ABC при центральной симметрии с центром О. Что представляет собой фигура F?
Глава XIII Движения. §2 Параллельный перенос и поворот
- 1162 Начертите отрезок AB и вектор MM1. Постройте отрезок A1B1, который получается из отрезка АВ параллельным переносом на вектор MM1.
- 1163 Начертите треугольник ABC, вектор ММ1, который не параллелен ни одной из сторон треугольника, и вектор а, параллельный стороне АС. Постройте треугольник A1B1C1, который получается из треугольника ABC параллельным переносом: а) на вектор ММ1; б) на ве
- 1164 Даны равнобедренный треугольник ABC с основанием АС и точка D на прямой АС, такая, что точка С лежит на отрезке AD. а) Постройте отрезок B1D, который получается из отрезка ВС параллельным переносом на вектор CD. б) Докажите, что четырехугольник ABB1D
- 1165 Даны треугольник, трапеция и окружность. Постройте фигуры, которые получаются из этих фигур параллельным переносом на данный вектор а.
- 1166 Постройте отрезок A1B1, который получается из данного отрезка AB поворотом вокруг данного центра О: а) на 120° по часовой стрелке; б) на 75° против часовой стрелки; в) на 180°.
- 1167 Постройте треугольник, который получается из данного треугольника ABC поворотом вокруг точки А на угол 150° против часовой стрелки.
- 1168 Точка D является точкой пересечения биссектрис равностороннего треугольника ABC. Докажите, что при повороте вокруг точки D на угол 120° треугольник ABC отображается на себя.
- 1169 Докажите, что при повороте квадрата вокруг точки пересечения его диагоналей на угол 90° квадрат отображается на себя.
- 1170 Постройте окружность, которая получается из данной окружности с центром С поворотом вокруг точки О на угол 60° против часовой стрелки, если: а) точки О и С не совпадают; б) точки О и С совпадают.
- 1171 Постройте прямую a1, которая получается из данной прямой а поворотом вокруг точки О на угол 60° по часовой стрелке, если прямая а: а) не проходит через точку О; б) проходит через точку О.
Глава XIII Движения. Дополнительные задачи
- 1172 При данном движении каждая из двух точек А и В отображается на себя. Докажите, что любая точка прямой АВ отображается на себя.
- 1173 При данном движении каждая из вершин треугольника ABC отображается на себя. Докажите, что любая точка плоскости отображается на себя.
- 1174 Докажите, что два прямоугольника равны, если: а) смежные стороны одного прямоугольника соответственно равны смежным сторонам другого; б) сторона и диагональ одного прямоугольника соответственно равны стороне и диагонали другого.
- 1175 Даны прямая а и точки М и N, лежащие по одну сторону от нее. Докажите, что на прямой а существует единственная точка X, такая, что сумма расстояний MX+XN имеет наименьшее значение.
- 1176 Даны острый угол ABC и точка D внутри него. Используя осевую симметрию, найдите на сторонах данного угла такие точки Е и F, чтобы треугольник DEF имел наименьший периметр.
- 1177 В треугольнике ABC медианы AA1, ВВ1 и СС1 пересекаются в точке М. Точки А2, В2 и С2 являются соответственно серединами отрезков AM, ВМ и СМ. Докажите, что ΔA1B1C1= ΔА2B2С2.
- 1178 На сторонах АВ и CD параллелограмма ABCD построены квадраты так, как показано на рисунке 332. Используя параллельный перенос, докажите, что отрезок, соединяющий центры этих квадратов, равен и параллелен стороне AD.
- 1179* На стороне АВ прямоугольника ABCD построен треугольник ABS, СС1 ⊥ AS, DD1 ⊥ BS, как показано на рисунке 333. Используя параллельный перенос, докажите, что прямые SK и АВ взаимно перпендикулярны .
- 1180 В окружность с центром О вписаны два равносторонних треугольника ABC и A1B1C1, причем вершины обозначены так, что направление обхода по дуге ABC от точки А к точке С совпадает с направлением обхода по дуге А1В1С1 от точки А1 к точке C1. Используя пов
- 1181 Даны две пересекающиеся прямые и точка О, не лежащая ни на одной из них. Используя центральную симметрию, постройте прямую, проходящую через точку О, так, чтобы отрезок этой прямой, отсекаемый данными прямыми, делился точкой О пополам.
- 1182 Используя параллельный перенос, постройте трапецию по ее основаниям и диагоналям.
- 1183 Даны две параллельные прямые b и с и точка А, не лежащая ни на одной из них них. Постройте равносторонний треугольник ABC так, чтобы вершины В и С лежали соответственно на прямых b и c. Сколько решений имеет задача?
Глава XIV. Начальные сведения из стереометрии. §1 Многогранники
- 1184 Сколько граней, ребер и вершин имеет: а) прямоугольный параллелепипед; б) тетраэдр; в) октаэдр?
- 1185 Докажите, что число вершин любой призмы четно, а число ребер кратно 3.
- 1186 Докажите, что площадь боковой поверхности прямой призмы (т. е. сумма площадей ее боковых граней) равна произведению периметра основания на боковое ребро.
- 1187 Существует ли параллелепипед, у которого: а) только одна грань — прямоугольник; б) только две смежные грани — ромбы; в) все углы граней — острые; г) все углы граней — прямые; д) число всех острых углов граней не равно числу всех тупых углов граней?
- 1188 На трех ребрах параллелепипеда даны точки А, B и С. Постройте сечение параллелепипеда плоскостью, проходящей через эти точки.
- 11891 Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью: а) АВС1; б)АСС1. Докажите, что построенные сечения — параллелограммы.
- 1190 Изобразите параллелепипед ABCDA1B1C1D1 и отметьте точки М и N соответственно на ребрах ВВ1 и СС1. Постройте точку пересечения: а) прямой MN с плоскостью ABC; б) прямой AM с плоскостью A1B1C1.
- 1191 Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через точки B1, D1 и середину ребра CD. Докажите, что построенное сечение — трапеция.
- 1192 Изобразите параллелепипед ABCDAiB1C1D1 и постройте его сечение плоскостью MNK, где точки М, N и К лежат соответственно на ребрах: а) ВВ1, АA1, AD; б) CC1, AD, BB1.
- 1193 Найдите диагональ прямоугольного параллелепипеда, если его измерения равны а) 1, 1, 2; б) 8, 9, 12; в) √39 , 7, 9.
- 1194 Ребро куба равно а. Найдите диагональ этого куба.
- 1195 Тело R состоит из тел Р и Q, имеющих соответственно объемы V1 и V2. Выразите объем V тела R через V1 и V2, если: а) тела Р и Q не имеют общих внутренних точек; б) тела Р и Q имеют общую часть, объем которой равен ⅓V1.
- 1196 Измерения прямоугольного параллелепипеда равны 8 см, 12 см и 18 см. Найдите ребро куба, объем которого равен объему этого параллелепипеда.
- 1197 Найдите объем прямоугольного параллелепипеда ABCDA1B1C1D1, если АС1= 13 см, BD = 12 см и ВС1=11 см.
- 1198 Докажите, что объем призмы равен произведению площади основания на высоту.
- 1199 Найдите объем прямой призмы АВСА1В1C1, если ∠BAC = 120°, АВ = 5 см, АС=3 см, а наибольшая из площадей боковых граней равна 35 см2.
- 1200 Найдите объем правильной n-угольной призмы, все ребра которой равны а, если: а) n=3; б) n = 4; в) n=6; г) n=8.
- 1201 Существует ли тетраэдр, у которого пять углов граней — прямые?
- 1202 Изобразите тетраэдр DABC и на ребрах DB, DC и ВС отметьте соответственно точки М, N и К. Постройте точку пересечения: а) прямой MN и плоскости ABC; б) прямой KN и плоскости ABD.
- 1203 Изобразите тетраэдр KLMN и постройте сечение этого тетраэдра плоскостью, проходящей через ребро KL и середину А ребра MN.
- 1204 Изобразите тетраэдр DABC отметьте точки М и N на ребрах BD и CD и внутреннюю точку К грани ABC. Постройте сечение тетраэдра плоскостью MNK.
- 1205 Докажите, что все апофемы правильной пирамиды равны друг другу.
- 1206 Докажите, что площадь боковой поверхности правильной пирамиды (т. е. сумма площадей ее боковых граней) равна половине произведения периметра основания на апофему.
- 1207 Основанием пирамиды является ромб, сторона которого равна 5 см, а одна из диагоналей равна 8 см. Найдите боковые ребра пирамиды, если ее высота проходит через точку пересечения диагоналей основания и равна 7 см.
- 1208 Найдите площадь боковой поверхности правильной шестиугольной пирамиды, если сторона ее основания равна а, а площадь боковой грани равна площади сечения, проведенного через вершину пирамиды и большую диагональ основания.
- 1209* Через точку Н1 высоты PH пирамиды РА1A2...An проведена секущая плоскость β, параллельная плоскости α ее основания. Докажите, что площадь полученного сечения равна
- 1210 Докажите, что объем пирамиды равен одной трети произведения площади основания на высоту.
- 1211 Найдите объем пирамиды с высотой h, если: а) h=2 м, а основанием является квадрат со стороной 3 м; б) h=2,2 м, а основанием является треугольник ABC, в котором АВ=20 см, BC= 13,5 см, ∠АВС=30°.
- 1212 Найдите объем правильной четырехугольной пирамиды, если сторона ее основания равна т, а плоский угол при вершине равен а.
Глава XIV. Начальные сведения из стереометрии. §2 Тела и поверхности вращения
- 1213 Докажите, что объем цилиндра равен произведению площади основания на высоту.
- 1214 Пусть V, r и h — соответственно объем, радиус и высота цилиндра. Найдите: а) V, если r = 2√2 см, h = 3 см; б) r, если V=120 см3, h = 3,6 см; в) h, если r=h, V= 8π см3.
- 1215 В цилиндр вписана правильная n-угольная призма (т. е. основания призмы вписаны в основания цилиндра). Найдите отношение объемов призмы и цилиндра, если: а) n=3; б) n=4; в) n = 6; г) n= 8; г) n — произвольное натуральное число.
- 1216 Диаметр основания цилиндра равен 1 м, высота цилиндра равна длине окружности основания. Найдите площадь боковой поверхности цилиндра.
- 1217 Сколько квадратных метров листовой жести пойдет на изготовление трубы длиной 4 м и диаметром 20 см, если на швы необходимо добавить 2,5% площади ее боковой поверхности?
- 1218 Один цилиндр получен вращением прямоугольника ABCD вокруг прямой АВ, а другой цилиндр — вращением этого же прямоугольника вокруг прямой ВС. а) Докажите, что площади боковых поверхностей этих цилиндров равны, б) Найдите отношение площадей полных повер
- 1219* Докажите, что объем конуса равен одной трети произведения площади основания на высоту.
- 1220 Пусть h, r и V — соответственно высота, радиус основания и объем конуса. Найдите: а) V, если h = 3 см, r = 1,5 см; б) h, если r = 4 см, V=48π см3; в) r, если h = m, V=p.
- 1221 Найдите объем конуса, если площадь его основания равна Q, а площадь боковой поверхности равна Р.
- 1222 Площадь полной поверхности конуса равна 45π дм2. Развертка боковой поверхности конуса представляет собой круговой сектор с дугой в 60°. Найдите объем конуса.
- 1223 Прямоугольный треугольник с катетами 6 см и 8 см вращается вокруг меньшего катета. Вычислите площади боковой и полной поверхностей образованного при этом вращении конуса.
- 1224* Докажите, что объем шара радиуса R равен 4/3πR3.
- 1225 Сферу радиуса R покрасили слоем краски толщины d. Слоем такой же толщины покрасили многоугольник и затратили при этом такое же количество краски. Найдите площадь многоугольника.
- 1226 Пусть V — объем шара радиуса R, S — площадь его поверхности. Найдите: a) S и V, если R=4 см; б) R и S, если V= 113,04 см3; в) R и V, если S = 64π см2.
- 1227 Диаметр Луны составляет (приближенно) четвертую часть диаметра Земли. Сравните объемы Луны и Земли, считая их шарами.
- 1228 Стаканчик для мороженого конической формы имеет глубину 12 см и диаметр верхней части 5 см. На него сверху положили две ложки мороженого в виде полушарий диаметром 5 см. Переполнит ли мороженое стаканчик, если оно растает?
- 1229 Сколько кожи пойдет на покрышку футбольного мяча радиуса 10 см (на швы добавить 8% от площади поверхности мяча)?
- 1230 Докажите, что площадь сферы равна площади полной поверхности конуса, высота которого равна диаметру сферы, а диаметр основания равен образующей конуса.
- 1231 Отношение объемов двух шаров равно 8. Как относятся площади их поверхностей?
Глава XIV. Начальные сведения из стереометрии. Дополнительные задачи
- 1232 Докажите, что диагональ параллелепипеда меньше суммы трех ребер, имеющих общую вершину.
- 1233 Докажите, что сумма квадратов четырех диагоналей параллелепипеда равна сумме квадратов двенадцати его ребер.
- 1234 Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечения плоскостями АВС1 и DCB1 а также отрезок, по которому эти сечения пересекаются; б) его сечение плоскостью, проходящей через ребро СС1 и точку пересечения диагоналей грани AA1D1D).
- 1235 Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью BKL, где К — середина ребра AA1 , a L — середина ребра СС1. Докажите, что построенное сечение — параллелограмм.
- 1236 Сумма площадей трех граней прямоугольного параллелепипеда, имеющих общую вершину, равна 404 дм2, а его ребра пропорциональны числам 3, 7 и 8. Найдите диагональ параллелепипеда.
- 1237 Найдите объем куба ABCDA1B1C1D1, если: а) АС =12 см; б) АС = 3√2 ; в) DE=1 см, где Е — середина ребра АВ.
- 1238 Найдите объем прямой призмы АВСА1B1С1, если AB=BC=m, ∠ABC=φ и BB1=BD, где BD — высота треугольника ABC.
- 1239 Наибольшая диагональ правильной шестиугольной призмы равна 8 см и составляет с боковым ребром угол в 30°. Найдите объем призмы.
- 1240 Изобразите тетраэдр DABC, отметьте точку К на ребре DC и точки М и N граней ABC и ACD. Постройте сечение тетраэдра плоскостью MNK.
- 1241 Основанием пирамиды является параллелограмм со сторонами 5 м и 4 м и меньшей диагональю 3 м. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 2 м. Найдите площадь поверхности пирамиды, т. е. сумму площадей всех ее граней.
- 1242 Найдите объем правильной треугольной пирамиды, высота которой равна 12 см, а сторона основания равна 13 см.
- 1243 В правильной n-угольной пирамиде плоский угол при вершине равен а, а сторона основания равна а. Найдите объем пирамиды.
- 1244 Алюминиевый провод диаметром 4 мм имеет массу 6,8 кг. Найдите длину провода (плотность алюминия равна 2,6 г/см3).
- 1245 Свинцовая труба (плотность свинца равна 11,4 г/см3) с толщиной стенок 4 мм имеет внутренний диаметр 13 мм. Какова масса трубы, если ее длина равна 25 м?
- 1246 Высота цилиндра на 12 см больше его радиуса, а площадь полной поверхности равна 288π см2. Найдите радиус основания и высоту цилиндра.
- 1247 Из квадрата, диагональ которого равна d, свернута боковая поверхность цилиндра. Найдите площадь ос-нования цилиндра.
- 1248 Высота конуса равна 5 см. На расстоянии 2 см от вершины его пересекает плоскость, параллельная основанию. Найдите объем этого конуса, если объем отсекаемого от него конуса равен 24 см3.
- 1249 Высота конуса равна 12 см, а его объем равен 324π см3. Найдите дугу развертки боковой поверхности этого конуса.
- 1250 Вычислите площадь основания и высоту конуса, если разверткой его боковой поверхности является сектор, радиус которого равен 9 см, а дуга равна 120°.
- 1251 Равнобедренный треугольник, боковая сторона которого равна m, а угол при основании равен φ, вращается вокруг основания. Найдите площадь поверхности тела, полученного при этом вращении.
- 1252 Шар и цилиндр имеют равные объемы, а диаметр шара равен диаметру цилиндра. Выразите высоту цилиндра через радиус шара.
- 1253 В цилиндрическую мензурку диаметром 2,5 см, наполненную водой до некоторого уровня, опускают 4 равных металлических шарика диаметром 1 см. На сколько изменится уровень воды в мензурке?
- 1254 Вода покрывает приблизительно ¾ земной поверхности. Сколько квадратных километров земной поверхности занимает суша (радиус Земли считать равным 6375 км)?
- 1255 В каком отношении находятся объемы двух шаров, если площади их поверхностей относятся как m2 : n2?
Задачи повышенной трудности. Задачи к главе X
- 1256 Вершины четырехугольника ABCD имеют координаты А (х1; у1), В (х2; у2), С (х3; у3) и D (х4; y4). Докажите, что этот четырехугольник является параллелограммом тогда и только тогда, когда х1+ х3= х2+ х4 и y1+ y3=y2+y4.
- 1257 Даны две точки А (х1; у1) и В (х2; у2). Докажите, что координаты (х; у) точки С, делящей отрезок АВ в отношении λ (т. е. AC/CB = λ), выражаются формулами
- 1258 Из физики известно, что центр тяжести однородной треугольной пластинки находится в точке пересечения медиан. Найдите координаты центра тяжести такой пластинки, если координаты ее вершин равны: (x1; y1), (х2; у2), (х3; у3).
- 1259 Вершины треугольника ABC имеют координаты А (-3; 0), В (0; 4), С (3; 0). Биссектриса угла А пересекает сторону и ВС в точке D. Найдите координаты точки D.
- 1260 В треугольнике ABC АС=9 см, ВС= 12 см. Медианы AM и BN взаимно перпендикулярны. Найдите АВ.
- 1261 Найдите координаты центра тяжести системы трех масс m1, m2 и m3, сосредоточенных соответственно в точках А1 (x1; y1), А2 (х2; у2), А3 (х3; у3).
- 1262 В каждом из следующих случаев на оси абсцисс найдите точку М, для которой сумма ее расстояний от точек А и В имеет наименьшее значение: а) А(2; 3), В (4; -5); б) А (-2; 4), B (3; 1).
- 1263 Докажите, что: а) уравнение Ах+Ву+С=0, где А и В одновременно не равны нулю, является уравнением прямой; б) уравнение х2-ху- 2 = 0 не является уравнением окружности.
- 1264 Найдите точки пересечения двух окружностей, заданных уравнениями (x— 1)2+(y— 2)2=4 и х2+у2= 1, и вычислите длину их общей хорды.
- 1265 Даны три точки А, B, С и три числа а, р, у. Найдите множество всех точек М, для каждой из которых сумма αAM2 + βВМ2 + γСМ2 имеет постоянное значение, если:
- 1266 Даны прямая а и точка А, не лежащая на ней. Для каждой точки М1 прямой а на луче АМ1 взята точка М, такая, что АМ1• AM = k, где k — данное положительное число. Найдите множество всех точек М.
- 1267 Точка О не лежит на данной окружности. Для каждой точки М1 окружности на луче ОМ1 взята точка М, такая, что ОМ = k • ОМ1, где k — данное положительное число. Найдите множество всех точек М.
- 1268 Пусть А и B — данные точки, k — данное положительное число, не равное 1. а) Докажите, что множество всех точек М, удовлетворяющих условию АМ=kBM, есть окружность (окружность Аполлония). б) Докажите, что эта окружность пересекается с любой окружностью
Задачи повышенной трудности. Задачи к главе XI
- 1269 На сторонах квадрата MNPQ взяты точки А и В так, что NA =½MN, QB = ⅓MN (рис. 369). Докажите, что ∠АМВ = 45°.
- 1270 В четырехугольнике ABCD диагонали АС и BD пересекаются в точке О. Площадь треугольника ODC есть среднее пропорциональное между площадями треугольников ОВС и OAD. Докажите, что ABCD — трапеция с основаниями AD и ВС или параллелограмм.
- 1271 Докажите, что площадь S произвольного четырехугольника со сторонами а, b, с, d (последовательно) удовлетворяет неравенству
- 1272 Докажите, что в треугольнике ABC биссектриса АА1 вычисляется по формуле
- 1273 Выразите диагонали вписанного в окружность четырехугольника через его стороны.
- 1274 Докажите, что площадь четырехугольника, вписанного в окружность, может быть вычислена по формуле
- 1275 Докажите, что стороны треугольника образуют арифметическую прогрессию тогда и только тогда, когда прямая, проходящая через центры вписанной и описанной окружностей, перпендикулярна к одной из биссектрис треугольника.
- 1276 В прямоугольной трапеции ABCD меньшее основание AD равно 3, а боковая сторона CD, не перпендикулярная к основаниям, равна 6. Точка Е - середина отрезка CD, угол СВЕ равен α. Найдите площадь трапеции ABCD.
- 1277 В остроугольном треугольнике ABC сторона АВ больше стороны ВС, отрезки AM и CN — высоты треугольника, точка О — центр описанной окружности. Угол ABC равен β, а площадь четырехугольника NOMB равна S. Найдите сторону АС.
- 1278 В треугольнике ABC проведены высота АН длиной h, медиана AM длиной l, биссектриса AN. Точка N — середина отрезка МН. Найдите расстояние от вершины А до точки пересечения высот треугольника ABC.
Задачи повышенной трудности. Задачи к главе XII
- 1279 На рисунке 370 изображен правильный десятиугольник, вписанный в окружность радиуса R, АС — биссектриса угла OAB. Докажите, что:
- 1280 Докажите, что отрезок АК, изображенный на рисунке 371, равен стороне правильного десятиугольника, вписанного в окружность с центром О.
- 1281 Около правильного пятиугольника А1А2А3А4А5 описана окружность с центром О. Вершинами треугольника ABC являются середины сторон A1A2, А2А3 и А3А4 пятиугольника. Докажите, что центр О данной окружности и центр О1 окружности, вписанной в треугольник ABC
- 1282* В данную окружность впишите правильный десятиугольник.
- 1283 В данную окружность впишите правильный пятиугольник.
- 1284 В данную окружность впишите пятиконечную звезду.
- 1285 Пусть М — произвольная точка, лежащая внутри правильного n-угольника. Докажите, что сумма перпендикуляров, проведенных из точки М к прямым, содержащим стороны n-угольника, равна nr, где r — радиус вписанной окружности.
- 1286 Углы треугольника образуют геометрическую прогрессию со знаменателем 2. Докажите, что середины сторон и основания высот этого треугольника являются шестью вершинами правильного семиугольника.
- 1287 Пусть ABCD — квадрат, а А1В1С1 - правильный треугольник, вписанные в окружность радиуса R. Докажите, что сумма AB+А1B1 равна длине полуокружности с точностью до 0,01R.
- 1288 По данным рисунка 372 докажите, что длина отрезка АС равна длине окружности с центром О радиуса R с точностью до 0,001R.
- 1289 На рисунке 373 изображены четыре полуокружности: АЕВ, АКС, CFD, DLB, причем AC=DB. Докажите, что площадь закрашенной фигуры равна площади круга, построенного на отрезке EF как на диаметре.
- 1290 Построить границу круга, площадь которого равна: а) площади кольца между двумя данными концентрическими окружностями; б) площади данного полукруга; в) площади данного кругового сектора, ограниченного дугой в 60°.
Задачи повышенной трудности. Задачи к главе XIII
- 1291 При данном движении g точка А отображается в точку B, а точка В — в точку А. Докажите, что g — центральная симметрия или осевая симметрия.
- 1292 Даны два равных отрезка АВ и A1B1. Докажите, что существуют два и только два движения, при которых точки А и B отображаются соответственно в точки А1 и B1.
- 1293 Докажите, что два параллелограмма равны, если диагонали и угол между ними одного параллелограмма соответственно равны диагоналям и углу между ними другого.
- 1294 Докажите, что две трапеции равны, если основания и боковые стороны одной трапеции соответственно равны основаниям и боковым сторонам другой.
- 1295 Докажите, что два треугольника равны, если две неравные стороны и разность противолежащих им углов одного треугольника соответственно равны двум сторонам и разности противолежащих им углов другого.
- 1296 Вершины одного параллелограмма лежат соответственно на сторонах другого параллелограмма. Докажите, что точки пересечения диагоналей этих параллелограммов совпадают.
- 1297 Даны две окружности и прямая. Постройте правильный треугольник так, чтобы две вершины лежали соответственно на данных окружностях, а высота, проведенная из третьей вершины, — на данной прямой.
- 1298 На стороне угла АОВ, с недоступной вершиной, дана точка М. Постройте отрезок, равный отрезку ОМ.
- 1299 Даны две пересекающиеся окружности. Постройте отрезок, концы которого лежат соответственно на данных окружностях, а его середина совпадает с одной из точек пересечения данных окружностей.
- 1300 Постройте треугольник по трем медианам.
- 1301 Постройте трапецию, стороны которой соответственно равны данным отрезкам.
- 1302 Даны точки А и B и две пересекающиеся прямые с и d. Постройте параллелограмм ABCD так, чтобы вершины С и D лежали соответственно на прямых c и d.
- 1303 Даны прямая, окружность и точка А, не лежащая на них. Постройте квадрат ABCD так, чтобы вершина B лежала на данной прямой, а вершина D — на данной окружности.
Задачи повышенной трудности. Задачи к главе XIV
- 1304 Все плоские углы тетраэдра ОABC при вершине О — прямые. Докажите, что квадрат площади треугольника ABC равен сумме квадратов площадей остальных граней (пространственная теорема Пифагора).
- 1305 Докажите, что сечением куба может быть правильный треугольник, квадрат, правильный шестиугольник.
- 1306 Комната имеет форму куба. Паук, сидящий в середине ребра, хочет, двигаясь по кратчайшему пути, поймать муху, сидящую в одной из самых удаленных от него вершин куба. Как должен двигаться паук?
- 1307 Докажите, что в кубе можно вырезать сквозное отверстие, через которое можно протащить куб таких же размеров.
- 1308 Плоскости АВ1С1 и А1ВС разбивают правильную треугольную призму АВСА1В1С1 на четыре части. Найдите объемы этих частей, если объем призмы равен V.
- 1309 Докажите, что плоскость, проходящая через ребро и середину противоположного ребра тетраэдра, разделяет его на две части, объемы которых равны.
- 1310 Правильная четырехугольная пирамида со стороной основания а и плоским углом а при вершине вращается вокруг прямой, проходящей через вершину параллельно стороне основания. Найдите объем полученного тела.
Комментарии