1133 Диагонали А1А6 и А2А9 правильного двенадцатиугольника пересекаются в точке В (рис. 318). Докажите, что: а) треугольники А1А2В и А6А9В равносторонние; б) А1А6 = 2 r, где r — радиус вписанной в двенадцатиугольник окружности.

Источник:

Решебник по геометрии за 9 класс к учебнику Геометрия. 7-9 класс Л.С.Атанасян и др. Решебник по геометрии за 9 класс (Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина, 2005 год),
задача №1133
к главе «Глава XII. Длина окружности и площадь круга. Дополнительные задачи».

Все задачи >

1133 Диагонали А1А6 и А2А9 правильного двенадцатиугольника пересекаются в точке В (рис. 318). Докажите, что: а) треугольники А1А2В и А6А9В равносторонние; б) А1А6 = 2 r, где r — радиус вписанной в двенадцатиугольник окружности.

Дано:

Доказать:

Доказательство:

Наверх