Начните вводить часть условия (например, могут ли, чему равен или найти):
§21.Тела вращения
- 1. Радиус основания цилиндра 2 м, а высота 3 м. Найдите диагональ осевого сечения.
- 2. Осевое сечение цилиндра — квадрат, площадь которого Q. Найдите площадь основания цилиндра.
- 3. Высота цилиндра 6 см, радиус основания 5 см. Найдите площадь сечения, проведенного параллельно оси цилиндра на расстоянии 4 см от нее.
- 4. Высота цилиндра 8 дм, радиус основания 5дм. Цилиндр пересечен плоскостью так, что в сечении получился квадрат. Найдите расстояние от этого сечения до оси.
- 5. Высота цилиндра 6 дм, радиус основания 5 дм. Концы отрезка АВ, равного 10 дм, лежат на окружностях обоих оснований. Найдите кратчайшее расстояние от него до оси.
- 6. В равностороннем цилиндре (диаметр равен высоте цилиндра) точка окружности верхнего основания соединена с точкой окружности нижнего основания.
- 7. В цилиндр вписана правильная шестиугольная призма. Найдите угол между диагональю ее боковой грани и осью цилиндра, если радиус основания равен высоте цилиндра.
- 8. Высота цилиндра 2 м. Радиус основания 7 м. В этот цилиндр наклонно вписан квадрат — так, что все вершины его лежат на окружностях оснований. Найдите сторону квадрата.
- 9. Радиус основания конуса 3 м, высота 4 м. Найдите образующую l.
- 10. Образующая конуса l наклонена к плоскости основания под углом 30°. Найдите высоту.
- 11. Радиус основания конуса R. Осевым сечением конуса является прямоугольный треугольник. Найдите его площадь.
- 12. В равностороннем конусе (осевое сечение — правильный треугольник) радиус основания R. Найдите площадь сечения, проведенного через две образующие, угол между которыми равен α.
- 13. Высота конуса 20, радиус его основания 25. Найдите площадь сечения, проведенного через вершину, если расстояние от него до центра основания конуса равно 12.
- 14. Радиус основания конуса R, а образующая наклонена к плоскости основания под углом а. Через вершину конуса проведена плоскость под углом φ к его высоте. Найдите площадь полученного сечения.
- 15.
- 16. Высота конуса Н. На каком расстоянии от вершины надо провести плоскость, параллельную основанию, чтобы площадь сечения была равна половине площади основания ?
- 17. Через середину высоты конуса проведена прямая, параллельная образующей l. Найдите длину отрезка прямой, заключенной внутри конуса.
- 18. Образующая конуса 13 см, высота 12 см. Конус пересечен прямой, параллельной основанию, расстояние от нее до основания равно 6 см, а до высоты — 2 см. Найдите отрезок прямой, заключенный внутри конуса.
- 19. Радиусы оснований усеченного конуса 3 м и 6 м, высота 4м. Найдите образующую.
- 20. Радиусы оснований усеченного конуса R и r, образующая наклонена к основанию под углом 45°. Найдите высоту Н.
- 21. Образующая усеченного конуса равна 2a и наклонена к основанию под углом 60°. Радиус одного основания вдвое больше радиуса другого основания. Найдите радиусы.
- 22. Радиусы оснований усеченного конуса 3дм и 7дм, образующая 5дм. Найдите площадь осевого сечения.
- 23. Площади оснований усеченного конуса 4 дм2 и 16 дм2, через середину высоты проведена плоскость, параллельная основаниям. Найдите площадь сечения.
- 24. Площадь оснований усеченного конуса M и m. Найдите площадь среднего сечения, параллельного основаниям.
- 25. У пирамиды все боковые ребра равны. Докажите, что она является вписанной в некоторый конус.
- 26. В конусе даны радиус основания R и высота H. Найдите ребро вписанного в него куба.
- 27. В конусе даны радиус основания R и высота H. В него вписана правильная треугольная призма, у которой боковые грани — квадраты Найдите ребро призмы.
- 28. Полушар и вписанный в него конус имеют общее основание и общую высоту. Через середину высоты проведена плоскость, параллельная основанию. Докажите, что площадь сечения, заключенного между боковой поверхностью конуса и поверхностью полушара, равна поло
- 29. Шар, радиус которого 41 дм, пересечен плоскостью на расстоянии 9дм от центра. Найдите площадь сечения.
- 30. Через середину радиуса шара проведена перпендикулярная ему плоскость. Как относится площадь полученного сечения к площади большого круга?
- 31. Радиус шара R. Через конец радиуса проведена плоскость под углом 60° к нему. Найдите площадь сечения.
- 32. Радиус земного шара R. Чему равна длина параллели, если ее широта 60°?
- 33. Город N находится на 60° северной широты. Какой путь совершает этот пункт в течение 1ч. вследствие вращения Земли вокруг своей оси?
- 34. На поверхности шара даны три точки. Прямолинейные расстояния между ними 6 см, 8 см, 10 см. Радиус шара 13 см. Найдите расстояние от центра до плоскости, проходящей через эти точки.
- 35. Диаметр шара 25 см. На его поверхности даны точка А и окружность, все точки, которой удалены (по прямой) от А на 15 см. Найдите радиус этой окружности.
- 36. Радиус шара 7 см. На его поверхности даны две равные окружности, имеющие общую хорду длиной 2 см. Найдите радиусы окружностей, зная, что их плоскости перпендикулярны.
- 37. Дан шар радиуса R. Через одну точку его поверхности проведены две плоскости: первая — касательная к шару, вторая — под углом 30° к первой. Найдите площадь сечения.
- 38. Имеется тело, ограниченное двумя концентрическими шаровыми поверхностями (полый шар). Докажите, что его сечение плоскостью, проходящей через центр, равновелико сечению, касательному к внутренней шаровой поверхности.
- 39. Шар радиуса R касается всех сторон правильного треугольника со стороной а. Найдите расстояние от центра шара до плоскости треугольника
- 40. Стороны треугольника 13см, 14см и 15см. Найдите расстояние от плоскости треугольника до центра шара, касающегося всех сторон треугольника. Радиус шара 5см.
- 41. Диагонали ромба 15 см и 20 см. Шаровая поверхность касается всех его сторон. Радиус шара 10 см. Найдите расстояние от центра шара до плоскости ромба.
- 42. Через касательную к поверхности шара проведены две взаимно перпендикулярные плоскости, пересекающие шар по кругам радиусов r1 и r2 Найдите радиус шара R.
- 43. Шар радиуса R вписан в усеченный конус. Угол наклона образующей l к плоскости нижнего основания конуса равен α. Найдите радиусы оснований и образующую усеченного конуса.
- 44. Два равных шара радиуса R расположены так, что центр одного лежит на поверхности другого. Найдите длину линии l, по которой пересекаются их поверхности.
- 45. Радиусы шаров 25 дм и 29 дм, а расстояние между их центрами 36 дм. Найдите длину линии l, по которой пересекаются их поверхности.
- 46. Найдите радиус шара, описанного около куба с ребром а.
- 47. Докажите, что центр шара, описанного около правильной пирамиды, лежит на ее оси.
- 48. Докажите, что центр шара, вписанного в правильную пирамиду, лежит на ее высоте.
- 49. Найдите радиус шара, описанного около правильного тетраэдра с ребром а.
- 50. В правильной четырехугольной пирамиде сторона основания равна а, а плоский угол при вершине равен а. Найдите радиусы вписанного и описанного шаров.
- 51. В шар радиуса R вписана правильная треугольная пирамида с плоскими углами а при ее вершине. Найдите высоту пирамиды.
- 52. Правильная n-угольная призма вписана в шар радиуса R. Ребро основания призмы равно а. Найдите высоту призмы при: 1) n = 3; 2) n = 4; 3) n = 6.
- 53. Сторона основания правильной n-угольной пирамиды равна а, двугранный угол при основании равен φ. Найдите радиус шара, вписанного в пирамиду.
- 54. Найдите радиус шара, описанного около правильной n-угольной пирамиды, если сторона основания равна а, а боковое ребро наклонено к плоскости основания под углом α.
Комментарии