Начните вводить часть условия (например, могут ли, чему равен или найти):
§18. Декартовы координаты и векторы в пространстве
- 1. Где лежат те точки пространства, для которых координаты х и у равны нулю?
- 2. Даны точки А(1;2;3), В(0;1;2), С(0;0;3), D(1;2;0). Какие из этих точек лежат: 1) в плоскости ху; 2) на оси z; 3) в плоскости yz?
- 3. Дана точка А(1;2;3). Найдите основание перпендикуляров, опущенных из этой точки на координатные оси и координатные плоскости.
- 4. Найдите расстояния от точки (1;2;-3) до: 1) координатных плоскостей; 2) осей координат; 3) начала координат.
- 5. В плоскости ху найдите точку D(x;y;0), равноудаленную от трех данных точек: А(0;1;-1), В(-1;0;1), С(0;-1;0).
- 6. Найдите точки, равноотстоящие от точек (0;0;1), (0;1;0), (1;0;0) и отстоящие от плоскости yz на расстояние 2.
- 7. На оси х найдите точку С(х;0;0), равноудаленную от двух точек А(1;2;3), В(-2;1;3).
- 8. Составьте уравнение геометрического места точек пространства, равноудаленных от точки А(1;2;3) и начала координат.
- 9. Докажите, что четырехугольник ABCD с вершинами в точках А(1;3;2), В(0;2;4), с(1;1;4), D(2;2;2) является параллелограммом.
- 10. Докажите, что четырехугольник ABCD является параллелограммом, если:
- 11. Докажите, что четырехугольник ABCD является ромбом, если:
- 12. Даны один конец отрезка А(2;3;-1) и его середина С(1;1;1). Найдите второй конец отрезка В(х;у;z).
- 13. Найдите координаты вершины D параллелограмма ABCD, если координаты трех других вершин известны:
- 14. Докажите, что середина отрезка с концами в точках А(а;с;-Ь) и В(-а;d;b) лежит на оси у.
- 15. Докажите, что середина отрезка с концами в точках С(a;b;c) и D(p;q;-c) лежит в плоскости ху.
- 16. Докажите, что преобразование симметрии относительно координатной плоскости ху задается формулами х' = х, у' = у, z' = -z.
- 17. Даны точки (1;2;3), (0;-1;2), (1;0;-3). Найдите точки, симметричные данным относительно координатных плоскостей.
- 18. Даны точки (1;2;3), (0;—1;2), (1;0;—3). Найдите точки, симметричные им относительно начала координат.
- 19. Докажите, что преобразование симметрии относительно точки есть движение.
- 20. Докажите, что преобразование симметрии относительно плоскости есть движение.
- 21. Докажите, что при движении в пространстве круг переходит в круг того же радиуса.
- 22. Докажите, что при движении в пространстве три точки, лежащие на прямой, переходят в три точки, также лежащие на одной прямой.
- 23. Найдите значения а, b, c в формулах параллельного переноса х' = х + а, у' = у + b, z' = z + c, если при этом параллельном переносе точка А(1;0;2) переходит в точку А'(2;1;0).
- 24. При параллельном переносе точка А(2;1;-1) переходит в точку А'(1;-1;0). В какую точку переходит начало координат?
- 25. Существует ли параллельный перенос, при котором точка А переходит в точку В, а точка С — в точку D, если: 1) А(2;1;0), В(1;0;1), С(3; -2;1), D(2;-3;0); 2) А(-2;3;5), В(1;2;4), С(4;-3;6), D(7;-2;5); 3) А(0;1;2), В(-1;0;1), С(3;-2;2), D(2;-3;1)
- 26. Докажите, что при параллельном переносе параллелограмм переходит в равный ему параллелограмм.
- 27. Четыре параллельные прямые пересекают параллельные плоскости в вершинах параллелограммов ABCD и A1B1C1D1 соответственно. Докажите, что параллелограммы ABCD и A1B1C1D1 совмещаются параллельным переносом.
- 28. Докажите, что преобразование гомотетии в пространстве является преобразованием подобия.
- 29. Три прямые, проходящие через точку S, пересекают данную плоскость в точках А, В, С, а параллельную ей плоскость в точках А1, В1, С1. Докажите, что треугольники АВС и А1В1С1 гомотетичны.
- 30. Прямая а лежит в плоскости α, а прямая b перпендикулярна этой плоскости. Чему равен угол между прямыми а и b?
- 31. Даны три точки, не лежащие на одной прямой. Чему равен угол между прямыми СА и СВ, Если эти прямые образуют углы а и в с прямой АВ и α + β < 90°?
- 32. Прямые а, b, с параллельны одной и той же плоскости. Чему равен угол между прямыми b и с, если углы этих прямых с прямой а равны 60° и 80°?
- 33. Докажите, что любая прямая на плоскости, перпендикулярная проекции наклонной на эту плоскость, перпендикулярна и наклонной. И обратно: если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
- 34. 1) Докажите, что прямая, пересекающая параллельные плоскости, пересекает их под равными углами. 2) Докажите, что плоскость, пересекающая параллельные прямые, пересекает их под равными углами.
- 35. Точка А отстоит от плоскости на расстояние h. Найдите длины наклонных, проведенных из этой точки под следующими углами к плоскости: 1) 30°; 2) 45°; 3) 60°.
- 36. Наклонная равна а. Чему равна проекция этой наклонной на плоскость, если наклонная составляет с плоскостью угол, равный: 1) 45°; 2) 60°; 3) 30°?
- 37. Отрезок длиной 10 м пересекает плоскость, концы его находятся на расстояниях 2 м и 3 м от плоскости. Найдите угол между данным отрезком и плоскостью.
- 38. Из точки, отстоящей от плоскости на расстояние а, проведены две наклонные, образующие с плоскостью углы 45° и 30°, а между собой прямой угол. Найдите расстояние между концами наклонных.
- 39. Из точки, отстоящей от плоскости на расстояние а, проведены две наклонные, образующие с плоскостью углы 45°, а между собой угол 60°. Найдите расстояние между концами наклонных.
- 40. Из точки, отстоящей от плоскости на расстояние а, проведены две наклонные под углом 30° к плоскости, причем их проекции образуют угол 120°. Найдите расстояние между концами наклонных.
- 41. Через катет равнобедренного прямоугольного треугольника проведена плоскость под углом 45° ко второму катету. Найдите угол между гипотенузой и плоскостью.
- 42. Докажите, что плоскость, пересекающая параллельные плоскости, пересекает их под равными углами.
- 43. Две плоскости пересекаются под углом 30°. Точка А, лежащая в одной из этих плоскостей, отстоит от второй плоскости на расстояние а. Найдите расстояние от этой точки до прямой пересечения плоскостей.
- 44. Найдите угол между плоскостями, если точка, взятая на одной из них, отстоит от прямой пересечения плоскостей вдвое дальше, чем от второй плоскости.
- 45. Два равнобедренных треугольника имеют общее основание, а их плоскости образуют угол 60°. Общее основание равно 16 м, боковая сторона одного треугольника 17 м, а боковые стороны другого перпендикулярны. Найдите расстояние между вершинами треугольников.
- 46. Равнобедренные треугольники АВС и ABD с общим основанием АВ лежат в различных плоскостях, угол между которыми равен а. Найдите cosα, если: 1) АВ = 24 см, АС = 13 см, AD = 37 см, CD = 35 см; 2) АВ = 32 см, АС = 65 см, AD = 20 см, CD = 63 см
- 47. Катеты прямоугольного треугольника равны 7 м и 24 м. Найдите расстояние от вершины прямого угла до плоскости, которая проходит через гипотенузу и составляет угол 30° с плоскостью треугольника.
- 48. Дан равносторонний треугольник со стороной а. Найдите площадь его ортогональной проекции на плоскость, которая образует с плоскостью треугольника угол, равный: 1) 30°; 2) 45°; 3) 60°.
- 49. 1) Найдите площадь треугольника ортогональной проекции треугольника АВС из задачи 46 на плоскость треугольника ABD. 2) Найдите площадь треугольника ортогональной проекции треугольника АВD из задачи 46 на плоскость треугольника АВС.
- 50. Даны четыре точки А(2;7;-3), В(1;0;3), С(-3;-4;5), D(-2;3;-1). Найдите среди векторов AB^, BC^ , DC^, AD^, AC^ и BD^ равные векторы.
- 51. Даны три точки А(1;0;1), В(-1;1;2), С(0;2;-1). Найдите точку D(x;y;z), если векторы AB и CD равны.
- 52. Найдите D(x;y;z), если сумма векторов AB и CD равна нулю. А(1;0;1), В(-1;1;2), С(0;2;-1).
- 53. Даны векторы (2, n,3)^ и (3,2, m)^. При каких m и n эти векторы коллинеарны?
- 54. Дан вектор a (1;2;3), найдите коллинеарный ему вектор с началом в точке А(1;1;1) и В на плоскости ху.
- 55. При каком значении n данные векторы перпендикулярны:
- 56. Даны три точки А(1;0;1), В(-1;1;2), С(0;2;-1). Найдите на оси z такую точку D(0;0;с), чтобы векторы AB и CD были перпендикулярны.
- 57. Векторы a^ и b^ образуют угол 60°, а вектор с^ им перпендикулярен. Найдите абсолютную величину вектора a^ + b^ + с^ .
- 58. Векторы а^, b^ , c^ единичной длины образуют попарно углы 60°. Найдите угол между векторами:
- 59. Даны четыре точки А(0;1;-1), В(1;-1;2), С(3;1;0), D(2;-3;1). Найдите косинус угла φ между векторами АВ и CD.
- 60. Даны три точки А(0;1;-1), В(1;-1;2), С(3;1;0). Найдите косинус угла С треугольника АВС.
- 61. Докажите, что угол φ между прямыми, содержащими векторы а^ и b^ , определяется из уравнения: |a^b^| = | а^ |•| b^ |•cosφ.
- 62. Из вершины прямого угла А треугольника АВС восставлен перпендикуляр AD к плоскости треугольника. Найдите косинус угла φ между векторами ВС и BD, если угол ABD равен α, а угол АВС равен β.
- 63. Наклонная образует угол 45° с плоскостью. Через основание наклонной проведена прямая в плоскости под углом 45° к проекции наклонной. Найдите угол φ между этой прямой и наклонной.
- 64. Из точки вне плоскости проведены перпендикуляр и две равные наклонные, образующие углы α с перпендикуляром. найдите угол φ между проекциями наклонных, если угол между наклонными β.
Комментарии