1) В параллельных плоскостях α и β, через точки пересечения их с данной прямой а проведем прямые b и с, параллельные между собой. Углы γ и φ равны (соответственные углы при параллельных прямых b и с, секущей а). Что и требовалось доказать.
2) В плоскости α проведем прямую с, через точки пересечения ее с прямыми а и b.
Тогда угол β равен углу γ (соответственные углы при параллельных прямых а и b, секущей с). Что и требовалось доказать.
Источник:
Решебник
по
геометрии
за 10 класс (А.В. Погорелов, 2001 год),
задача №34
к главе «§18. Декартовы координаты и векторы в пространстве».
Комментарии