Начните вводить часть условия (например, могут ли, чему равен или найти):
Дополнительные задачи к главе I Параллельность прямых и плоскостей.
- 88. Параллельные прямые АС и BD пересекают плоскость α соответственно в точках А и В. Точки С и D лежат по одну сторону от плоскости α, AС = 8 см, BD = 6 см, АВ = 4 см. а) Докажите, что прямая CD пересекает плоскость α в некоторой точке
- 89. Точки А, В, С и D не лежат в одной плоскости. Медианы треугольников ABC и CBD пересекаются соответственно в точках M1 и М2. Докажите, что отрезки AD и М1М2 параллельны.
- 90. Вершины А и В трапеции ABCD лежат в плоскости α, а вершины С и D не лежат в этой плоскости. Как расположена прямая CD относительно плоскости α, если отрезок АВ является: а) основанием трапеции; б) боковой стороной трапеции?
- 91. Через каждую из двух параллельных прямых a и b и точку М, не лежащую в плоскости этих прямых, проведена плоскость. Докажите, что эти плоскости пересекаются по прямой, параллельной прямым a и b.
- 92. Плоскость α и прямая a параллельны прямой b. Докажите, что прямая a либо параллельна плоскости α, либо лежит в ней.
- 93. Прямые а и b параллельны. Через точку М прямой a проведена прямая MN, отличная от прямой а и не пересекающая прямую b. Каково взаимное расположение прямых MN и b?
- 94. Даны две скрещивающиеся прямые и точка В, не лежащая на этих прямых. Пересекаются ли плоскости, каждая из которых проходит через одну из прямых и точку В? Ответ обоснуйте.
- 95. Прямая а параллельна плоскости α. Докажите, что если плоскость β пересекает прямую а, то она пересекает и плоскость α.
- 96. Докажите, что отрезки параллельных прямых, заключенные между плоскостью и параллельной ей прямой, равны.
- 97. Докажите, что два угла с соответственно параллельными сторонами либо равны, либо их сумма равна 180°.
- 98. Прямая а параллельна плоскости α. Существует ли плоскость, проходящая через прямую а и параллельная плоскости α? Если существует, то сколько таких плоскостей? Ответ обоснуйте.
- 99. Докажите, что три параллельные плоскости отсекают на любых двух пересекающих эти плоскости прямых пропорциональные отрезки.
- 100. Даны две скрещивающиеся прямые и точка А. Докажите, что через точку А проходит, и притом только одна, плоскость, которая либо параллельна данным прямым, либо проходит через одну из них и параллельна другой.
- 101. Докажите, что отрезки, соединяющие середины противоположных ребер тетраэдра, пересекаются и точкой пересечения делятся пополам.
- 102. Докажите, что плоскость α, проходящая через середины двух ребер основания тетраэдра и вершину, не принадлежащую основанию, параллельна третьему ребру основания. Найдите периметр и площадь сечения тетраэдра плоскостью α, если длины всех ре
- 103. На ребрах DA, DB и DC тетраэдра DABC отмечены точки М, N и Р так, что DM:MA = DN:NB = DP:PC. Докажите, что плоскости MNP и ABC параллельны. Найдите площадь треугольника MNP, если площадь треугольника ABC равна 10 см2 и DM: МА = 2:1.
- 104. Изобразите тетраэдр ABCD и отметьте точку М на ребре АВ. Постройте сечение тетраэдра плоскостью, проходящей через точку М параллельно прямым АС и BD.
- 105. Изобразите тетраэдр DABС и отметьте точки М и N на ребрах BD и CD и внутреннюю точку К грани ABC. Постройте сечение тетраэдра плоскостью MNK.
- 106. Изобразите тетраэдр DABС, отметьте точку К на ребре DC и точки М и N граней ABC и ACD. Постройте сечение тетраэдра плоскостью MNK.
- 107. Изобразите тетраэдр ABCD и отметьте точку М на ребре АВ. Постройте сечение тетраэдра плоскостью, проходящей через точку М параллельно грани BDC.
- 108*. В тетраэдре DABC биссектрисы трех углов при вершине D пересекают отрезки ВС, СА и АВ соответственно в точках А1, В1 и C1. Докажите, что отрезки АА1, ВВ1 и CC1 пересекаются в одной точке.
- 109. Две плоскости, каждая из которых содержит два боковых ребра параллелепипеда, не принадлежащих одной грани, пересекаются по прямой а. Докажите, что прямая а параллельна боковым ребрам параллелепипеда и пересекает все его диагонали.
- 110. Докажите, что в параллелепипеде ABCDA1B1C1D1 плоскость A1DB параллельна плоскости D1CB1.
- 111. Докажите, что диагональ параллелепипеда меньше суммы трех ребер, имеющих общую вершину.
- 112. Докажите, что сумма квадратов четырех диагоналей параллелепипеда равна сумме квадратов двенадцати его ребер.
- 113. По какой прямой пересекаются плоскости сечений A1BCD1 и BDD1B1 параллелепипеда ABCDA1B1C1D1?
- 114. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте на ребре АВ точку М. Постройте сечение параллелепипеда плоскостью, проходящей через точку М параллельно плоскости АСС1.
- 115. Точка М лежит на ребре ВС параллелепипеда ABCDA1B1C1D1. Постройте сечение этого параллелепипеда плоскостью, проходящей через точку М параллельно плоскости BDC1.
Комментарии