Начните вводить часть условия (например, могут ли, чему равен или найти):
Глава VIII. Окружность. Задачи повышенной трудности
- 877 Две окружности имеют единственную общую точку М. Через эту точку проведены две секущие, пересекающие одну окружность в точках А и A1, а другую — в точках В и Bг Докажите, что АА1||ВВ1.
- 878 Прямая АС — касательная к окружности с центром O1, а прямая BD — касательная к окружности с центром O2 (рис. 270). Докажите, что: a) AD||BC; б) AB2=AD⋅BC; в)BD2:AC2=AD:BC.
- 879 Точки B1 и С1 — середины дуг АВ и АС (рис. 271). Докажите, что AM=AN.
- 880 Окружность отсекает на двух прямых, которые пересекаются в точке, не лежащей на окружности, равные хорды. Докажите, что расстояния от точки пересечения этих прямых до концов той и другой хорды соответственно равны между собой.
- 881 Докажите, что для всех хорд АВ данной окружности величина AB2/AD, где AD — расстояние от точки А до касательной в точке В, имеет одно и то же значение.
- 882 Через точку А пересечения двух окружностей с центрами в точках О1 и O2 проведена прямая, пересекающая одну окружность в точке В, а другую — в точке С. Докажите, что отрезок ВС будет наибольшим тогда, когда он параллелен прямой O1O2.
- 883 Отрезок АВ является диаметром окружности с центром О. На каждом радиусе ОМ окружности отложен от центра О отрезок, равный расстоянию от конца М этого радиуса до прямой АВ. Найдите множество концов построенных таким образом отрезков.
- 884 Внутри угла ABC равностороннего треугольника ABC взята точка М так, что ∠BMC=30°, ∠BMA= 17°. Найдите углы ВАМ и ВСМ.
- 885 Через каждую вершину треугольника ABC проведена прямая, перпендикулярная к биссектрисе угла треугольника при этой вершине. Проведенные прямые, пересекаясь, образуют новый треугольник. Докажите, что вершины этого треугольника лежат на прямых, содержащи
- 886 Пусть Н — точка пересечения прямых, содержащих высоты треугольника ABC, а А', В', С' — точки, симметричные точке Н относительно прямых ВС, СА, АВ. Докажите, что точки А', В', С' лежат на окружности, описанной около треугольника ABC.
- 887 Отрезок BD — биссектриса треугольника ABC. Докажите, что BD2=AB⋅ВС - AD⋅DC.
- 888 В треугольнике ABC из вершины В проведены высота ВН и биссектриса угла B, которая пересекает в точке Е описанную около треугольника окружность с центром О. Докажите, что луч BE является биссектрисой угла ОВН.
- 889 Произвольная точка X окружности, описанной около равностороннего треугольника ABC, соединена отрезками с его вершинами. Докажите, что один из отрезков АХ, ВХ и СХ равен сумме двух других отрезков.
- 890 Докажите, что если диагонали вписанного четырехугольника перпендикулярны, то сумма квадратов противоположных сторон четырехугольника равна квадрату диаметра описанной окружности.
- 891 В четырехугольнике ABCD, вписанном в окружность, биссектрисы углов А и В пересекаются в точке, лежащей на стороне CD. Докажите, что СD=BC+AD.
- 892 Докажите, что площадь прямоугольной трапеции, описанной около окружности, равна произведению ее оснований.
- 893 Докажите, что в любом четырехугольнике, вписанном в окружность, произведение диагоналей равно сумме произведений противоположных сторон (теорема Птолемея).
- 894 Докажите, что в любом треугольнике радиус R описанной окружности, радиус r вписанной окружности и расстояние d между центрами этих окружностей связаны равенством d2=R2-2Rr (формула Эйлера).
- 895 Для неравностороннего треугольника ABC точка О является центром описанной окружности, Н— точка пересечения прямых, содержащих высоты AA1, ВВ1 и СС1, точки А2, B2, С2 — середины отрезков АН, ВН, СН, а точки А3, B3, С3 — середины сторон треугольника ABC
- 896 Докажите, что основания перпендикуляров, проведенных из произвольной точки окружности, описанной около треугольника, к прямым, содержащим стороны этого треугольника, лежат на одной прямой (прямая Симпсона).
- 897 Постройте общую касательную к двум данным окружностям.
- 898 Даны окружность с центром О, точка М и отрезки P1Q1 и P2Q2. Постройте прямую р так, чтобы окружность отсекала на ней хорду, равную P1Q1, и расстояние от точки М до прямой р равнялось P2Q2.
- 899 Внутри окружности дана точка. Постройте хорду, проходящую через эту точку, так, чтобы она была наименьшей из всех хорд, проходящих через эту точку.
- 900 Постройте треугольник: а) по стороне, противолежащему углу и высоте, проведенной к данной стороне; б) по углу, высоте, проведенной из вершины данного угла, и периметру.
- 901 Постройте треугольник, если дана описанная окружность и на ней точки Н, В и М, через которые проходят прямые, содержащие высоту, биссектрису и медиану треугольника, проведенные из одной вершины.
- 902 Даны три точки, не лежащие на одной прямой. Постройте треугольник, для которого эти точки являются основаниями высот. Сколько решений имеет задача?
- 903 Докажите основные свойства умножения вектора на число (п. 83).
Комментарии