Начните вводить часть условия (например, могут ли, чему равен или найти):
Глава II. Треугольники. §4 Задачи на построение
- 143 Какие из отрезков, изображенных на рисунке 90, являются: а) хордами окружности; б) диаметрами окружности; в) радиусами окружности?
- 144 Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВС равны; в) ∠BAD =∠BCD.
- 145 Отрезок МК — диаметр окружности с центром О, а МР и РК — равные хорды этой окружности. Найдите ∠POM.
- 146 Отрезки АВ и CD — диаметры окружности с центром О. Найдите периметр треугольника AOD, если известно, что СВ = 13 см, АВ = 16 см.
- 147 На окружности с центром О отмечены точки А и В так, что угол АОВ — прямой. Отрезок ВС — диаметр окружности. Докажите, что хорды АВ и АС равны.
- 148 На прямой даны две точки А и В. На продолжении луча ВА отложите отрезок ВС так, чтобы ВС= 2АВ.
- 149 Даны прямая а, точка В, не лежащая на ней, и отрезок PQ. Постройте точку М на прямой a так, чтобы ВМ = PQ. Всегда ли задача имеет решение?
- 150 Даны окружность, точка А, не лежащая на ней, и отрезок PQ. Постройте точку М на окружности так, чтобы AM = PQ. Всегда ли задача имеет решение?
- 151 Даны острый угол ВАС и луч XY. Постройте угол YXZ так, чтобы ∠YXZ = 2∠BAC.
- 152 Дан тупой угол АОВ. Постройте луч ОХ так, чтобы углы ХОА и ХОВ были равными тупыми углами.
- 153 Даны прямая а и точка М, не лежащая на ней. Постройте прямую, проходящую через точку М и перпендикулярную к прямой а.
- 154 Дан треугольник ABC. Постройте: а) биссектрису АК; б) медиану ВМ; в) высоту СН треугольника.
- 155 С помощью циркуля и линейки постройте угол, равный: а) 45°; б) 22°30'.
- 156 Периметр треугольника ABC равен 15 см. Сторона ВС больше стороны АВ на 2 см, а сторона AB меньше стороны АС на 1 см. Найдите стороны треугольника.
- 157 В равнобедренном треугольнике основание больше боковой стороны на 2 см, но меньше суммы боковых сторон на 3 см. Найдите стороны треугольника.
- 158 Основание равнобедренного треугольника равно 8 см. Медиана, проведенная к боковой стороне, разбивает треугольник на два треугольника так, что периметр одного треугольника на 2 см больше периметра другого. Найдите боковую сторону данного треугольника.
- 159 Докажите, что два равнобедренных треугольника равны, если боковая сторона и угол, противолежащий основанию, одного треугольника соответственно равны боковой стороне и углу, противолежащему основанию, другого треугольника.
- 160 Прямая а проходит через середину отрезка АВ и перпендикулярна к нему. Докажите, что: а) каждая точка прямой а равноудалена от точек А и B; б) каждая точка, равноудаленная от точек А и B, лежит на прямой а.
- 161 В треугольниках ABC и А1B1С1 медианы AM и А1М1 равны, BC=B1С1 и ∠AMB=∠A1M1B1. Докажите, что ΔABC=ΔA1B1C1.
- 162 На рисунке 92 треугольник ADE равнобедренный, DE — основание. Докажите, что: а) если BD=CE, то ∠CAD=∠BAE и AB=АС; б) если ∠CAD=∠BAE, то BD = CE и AB=АС.
- 163 Докажите, что середины сторон равнобедренного треугольника являются вершинами другого равнобедренного треугольника.
- 164 На сторонах равностороннего треугольника ABC отложены равные отрезки AD, BE и CF, как показано на рисунке 93. Точки D, Е, F соединены отрезками. Докажите, что треугольник DEF — равносторонний.
- 165 Отрезки АВ и CD пересекаются в их общей середине О. На отрезках АС и BD отмечены точки К и К1 так, что АК = BK1. Докажите, что: а) ОК = ОК1; б) точка О лежит на прямой КК1.
- 166 Отрезки АВ и CD пересекаются в их общей середине О. Точки М и N — середины отрезков АС и BD. Докажите, что точка О — середина отрезка MN.
- 167 Стороны равностороннего треугольника ABC продолжены, как показано на рисунке 94, на равные отрезки AD, СЕ, BF. Докажите, что треугольник DEF — равносторонний.
- 168 В треугольнике ABC ∠A= 38°, ∠B= 110°, ∠C=32°. На стороне АС отмечены точки D и Е так, что точка D лежит на отрезке АЕ, BD=DA, ВЕ=ЕС. Найдите угол DBE.
- 169 На рисунке 95 OC=OD, ОВ=ОЕ. Докажите, что АВ = EF. Объясните способ измерения ширины озера (отрезка АВ на рисунке 95), основанный на этой задаче.
- 170 Докажите, что треугольники ABC и А1B1С1 равны, если АВ =А1В1, ∠A=∠A1, AD =A1D1, где AD и A1D1 — биссектрисы треугольников.
- 171 В треугольниках ABC и ADC стороны ВС и AD равны и пересекаются в точке О, ∠OAC=∠OCA. Докажите, что треугольники АВО и СDO равны.
- 172 На рисунке 96 AC=AD, AB⊥CD. Докажите, что BC=BD и ∠ACB=∠ADB.
- 173* Докажите, что угол, смежный с углом треугольника, больше каждого из двух других углов треугольника.
- 174* Докажите, что ΔАВС=ΔА1В1С1, если ∠A=∠A1, ∠B=∠B1, BC=B1C1.
- 175* На сторонах угла XOY отмечены точки А, В, С и D так, что ОА=ОВ, AC=BD (рис. 97). Прямые AD и ВС пересекаются в точке Е. Докажите, что луч ОЕ — биссектриса угла XOY. Опишите способ построения биссектрисы угла, основанный на этом факте.
- 176* Докажите, что треугольники ABC и А1В1С1 равны, если АВ=А1В1, АС=А1С1, АМ=А1М1, где AM и А1М1 — медианы треугольников.
- 177* Даны два треугольника: ABC и А1В1С1. Известно, что АВ=А1В1, АС=А1С1, ∠A=∠A1. На сторонах АС и ВС треугольника ABC взяты соответственно точки К и L, а на сторонах А1С1 и В1С1 треугольника А1В1С1 — точки К1 и L1 так, что AK=A1K1, LC=L1C1. Докаж
- 178* Даны три точки А, B, С, лежащие на одной прямой, и точка D, не лежащая на этой прямой. Докажите, что по крайней мере два из трех отрезков AD, BD и CD не равны друг другу.
- 179* На боковых сторонах АВ и АС равнобедренного треугольника ABC отмечены точки Р и Q так, что ∠PXB=∠QXC, где X— середина основания ВС. Докажите, что BQ=CP.
- 180 Постройте окружность данного радиуса, проходящую через данную точку, с центром на данной прямой.
- 181 Постройте окружность данного радиуса, проходящую через две данные точки.
- 182 Даны прямая а, точки А, B и отрезок PQ. Постройте треугольник ABC так, чтобы вершина С лежала на прямой а и AC=PQ.
- 183 Даны окружность, точки А, B и отрезок PQ. Постройте треугольник ABC так, чтобы вершина С лежала на данной окружности и AC=PQ.
- 184 На стороне ВС треугольника ABC постройте точку, равноудаленную от вершин А и С.
- 185 С помощью циркуля и линейки разделите данный отрезок на четыре равные части.
Комментарии