* В задачах этого параграфа двугранный угол с ребром АВ, на разных гранях которого отмечены точки С и D, для краткости будем называть так: двугранный угол CABD.
Решение. Проведем в плоскости α произвольную прямую АС, перпендикулярную к прямой с, C∈c. Докажем, что CA⊥β.
В плоскости β через точку С проведем прямую СВ, перпендикулярную к прямой с. Так как СА⊥c и CB⊥c, то ∠АСВ — линейный угол одного из двугранных углов, образованных плоскостями α и β. По условию задачи α ⊥ β, поэтому ∠АСВ — прямой, т.е. CA⊥CB. Таким образом, прямая СА перпендикулярна к двум пересекающимся прямым с и СВ плоскости β, поэтому CA⊥β.
Решебник
по
геометрии
за 10 класс (Л.С.Атанасян, 2001 год),
задача №178
к главе «Глава II Перпендикулярность прямых и плоскостей. §3 Двугранный угол. Перпендикулярность плоскостей.».