441. Дан куб ABCDA1B1C1D1. Найдите угол между векторами: а) В1В и В1С; б) DA и B1D1; в) А1С1 и А1В; г) ВС и АС; д) ВВ1 и АС; е) В1С и AD1; ж) A1D1 и ВС; з) АА1 и С1С.

441. Дан куб ABCDA1B1C1D1. Найдите угол между векторами: а) В1В и В1С; б) DA и B1D1; в) А1С1 и А1В; г) ВС и АС; д) ВВ1 и АС; е) В1С и AD1; ж) A1D1 и ВС; з) АА1 и С1С.

Сделаем рисунок.

а) Векторы ВВ1 и В1С совпадают с катетом и гипотенузой прямоугольного треугольника BВ1С, следовательно, ВВ1С=45°.

б) BD = B1D1 , т.к. они сонаправлены и имеют одинаковую длину. BD = B1D1 =- DB .

Угол между DB и DA — угол между стороной и диагональю квадрата, т.е. α=45°. Тогда угол между

DA и B1D1 равен 135°.

в) A1C1 и A1B совпадают со сторонами равностороннего треугольника АВС и отложены из одной точки. Следовательно, угол 60°.

г)

(угол между стороной и диагональю

квадрата).

д)

е)

Пусть О — точка пересечения диагоналей В1С и ВС1,

квадрата ВВ1С1С.

следовательно,

ж)

следовательно,

з)

следовательно, угол между ними равен 180°

Комментарии