Пусть
пересекаются по прямой с,
Тогда проведем в плоскости β через точку С пересечения прямых а и с прямую b перпендикулярно с. Тогда плоскость γ образованная прямыми а и b, перпендикулярна прямой с. Так как α ⊥ β (по условию), то а ⊥ b; а ⊥ с. Так что а ⊥ β. Что и требовалось доказать.
Источник:
Решебник
по
геометрии
за 10 класс (А.В. Погорелов, 2001 год),
задача №58
к главе «§17. Перпендикулярность прямых и плоскостей».
Комментарии