Пусть АВ — данный отрезок, точка О — середина отрезка, через точку О проведена плоскость. Проведем АА1 и ВВ1 перпендикуляры на плоскость α.
По теореме 18.4 прямые АА1 и ВВ1, а вместе с ними и отрезок АВ и точка О лежат в одной плоскости.
Далее рассмотрим ΔАА1О и ΔВВ1О — они прямоугольные.
АО = ОВ — по условию, ∠А1ОА = ∠B1OB как вертикальные. Так что, ΔАА1О = ΔВВ1О, а, значит, АА1 = ВВ1. Что и требовалось доказать.
Источник:
Решебник
по
геометрии
за 10 класс (А.В. Погорелов, 2001 год),
задача №34
к главе «§17. Перпендикулярность прямых и плоскостей».
Комментарии