Пусть a — прямая, проходящая через середины AB и BC, а b — прямая, проходящая через середины CD и AD. Тогда в ΔАВС: прямая а — средняя линия в ΔADC: прямая b — средняя линия. Так что прямая а параллельна АС, и прямая b параллельна АС, а, значит, прямые а и b параллельны. Что и требовалось доказать.
Источник:
Решебник
по
геометрии
за 10 класс (А.В. Погорелов, 2001 год),
задача №10
к главе «§ 16. Параллельность прямых и плоскостей».
Комментарии