166. Неперпендикулярные плоскости α и β пересекаются по прямой MN. В плоскости β из точки А проведен перпендикуляр АВ к прямой MN и из той же точки А проведен перпендикуляр АС к плоскости α. Докажите, что ∠ABC — линейный угол дву

* В задачах этого параграфа двугранный угол с ребром АВ, на разных гранях которого отмечены точки С и D, для краткости будем называть так: двугранный угол CABD.

166. Неперпендикулярные плоскости α и β пересекаются по прямой MN. В плоскости β из точки А проведен перпендикуляр АВ к прямой MN и из той же точки А проведен перпендикуляр АС к плоскости α. Докажите, что ∠ABC — линейный угол двугранного угла AMNC.

Дано: α не параллельна β;

Решение:

Проведем отрезок ВС.

АС ⊥ α, АВ - наклонная, АВ ⊥ MN, то по теореме, обратной к теореме о 3-х перпендикулярах, ВС⊥MN.

то

отсюда заключаем, что ∠АВС - линейный угол двугранного угла AMNC (это следует из определения).

Комментарии