122. Прямая CD перпендикулярна к плоскости правильного треугольника ABC. Через центр О этого треугольника проведена прямая ОК, параллельная прямой CD. Известно, что АВ = 16 √3 см, ОK = 12 см, CD = 16 см. Найдите расстояния от точек D и К до вершин А

122. Прямая CD перпендикулярна к плоскости правильного треугольника ABC. Через центр О этого треугольника проведена прямая ОК, параллельная прямой CD. Известно, что АВ = 16 √3 см, ОK = 12 см, CD = 16 см. Найдите расстояния от точек D и К до вершин А и В треугольника.

Решение:

Рассмотрим ΔDAC и ΔDCB.

- по условию,

- общая,

то

Отсюда

- радиус описанной окружности.

(следствие из теоремы синусов);

Итак,

Итак,

ΔKOA = ΔKOB (прямоугольные, равны по двум катетам), следовательно, AK = KB.

Ответ:

Комментарии