Исходя из утверждения задачи № 29, выходит, что ΔABD = ΔDBC, таким образом, AD = DC как стороны, лежащие в равных треугольниках против равных углов, следовательно, BD — медиана.
∠ABD = ∠DBC (следовательно, BD — биссектриса), что и требовалось доказать.
Источник:
Решебник
по
геометрии
за 7 класс (А.В. Погорелов, 2001 год),
задача №30
к главе «§ 3. Признаки равенства треугольников».
Комментарии