46. К плоскости треугольника из центра вписанной в него окружности радиуса 0,7 м восстановлен перпендикуляр длиной 2,4 м. Найдите расстояние от конца этого перпендикуляра до сторон треугольника.

Пусть O -центр вписанной окружности, а OS - данный перпендикуляр. Тогда r = АО = ОВ = ОС = 0,7 м., где точки А,В,С — точки касания сторон треугольника с окружностью. По теореме о трех перпендикулярах SA ⊥ MN. Тогда по теореме Пифагора в ΔAOS:

Комментарии