Пусть АВС — данный треугольник, О — центр описанной около треугольника окружности, Х — любая точка на перпендикулярной ΔАВС прямой.
Тогда поскольку О - центр описанной окружности, то ОА = ОВ = =ОС = R. Тогда XA = XB = XC - как наклонные с равными проекциями. Что и требовалось доказать.
Источник:
Решебник
по
геометрии
за 10 класс (А.В. Погорелов, 2001 год),
задача №6
к главе «§17. Перпендикулярность прямых и плоскостей».
Комментарии