Допустим, что прямые а и b, проходящие через точку С, перпендикулярны не проходящей через точку С плоскости α. Пусть они пересекают плоскость α в точках А и В. Но тогда эти точки должны совпасть, иначе получится ΔАВС с двумя прямыми углами, что не может быть. Прямые а и b имеют две общие точки С и А, так что и по аксиоме I2 эти прямые должны совпасть. Что и требовалось доказать.
Источник:
Решебник
по
геометрии
за 10 класс (А.В. Погорелов, 2001 год),
задача №5
к главе «§17. Перпендикулярность прямых и плоскостей».
Комментарии