Пусть плоскости β и γ пересекаются по прямой а и пересекают плоскость α по параллельным прямым b и с. Если прямая а не параллельна плоскости α, то она пересекает плоскость α в некоторой точке А. Тогда точка А принадлежит всем трем плоскостям α, β и γ, а, значит, и прямым b и с. Таким образом, прямые b и с имеют общую точку А, что противоречит условию. Так что a параллельна а, что и требовалось доказать.
Источник:
Решебник
по
геометрии
за 10 класс (А.В. Погорелов, 2001 год),
задача №17
к главе «§ 16. Параллельность прямых и плоскостей».
Комментарии