Начните вводить часть условия (например, могут ли, чему равен или найти):
Глава I. Начальные геометрические сведения. §6 Перпендикуляр. Прямые
- 54 Начертите острый угол АОВ и на продолжении луча ОВ отметьте точку D. Сравните углы АОВ и AOD.
- 55 Начертите три угла: острый, прямой и тупой. Для каждого из них начертите смежный угол.
- 56 Начертите неразвернутый угол hk. Постройте угол h1k1 так, чтобы углы hk и h1k1 были вертикальными.
- 57 Начертите неразвернутый угол MON и отметьте точку Р внутри угла и точку Q — вне его. С помощью чертежного угольника и линейки через точки Р и Q проведите прямые, перпендикулярные к прямым ОМ и ON.
- 58 Найдите угол, смежный с углом ABC, если: a) ∠ABC = 111°; б) ∠ABC = 90°; в) ∠ABC= 15°.
- 59 Один из смежных углов прямой. Каким (острым, прямым, тупым) является другой угол?
- 60 Верно ли утверждение: если смежные углы равны, то они прямые?
- 61 Найдите смежные углы hk и kl, если: a) ∠hk меньше ∠kl на 40°; б) ∠hk больше ∠kl на 120°; в) ∠hk больше ∠kl на 47°18'; г) ∠hk = 3∠kl; д) ∠hk : ∠kl = 5 : 4.
- 62 На рисунке 46 углы BOD и COD равны. Найдите угол AOD, если ∠COB = 148°.
- 63 Даны два равных угла. Равны ли смежные с ними углы?
- 64 Найдите изображенные на рисунке 41 углы: а) 1, 3, 4, если ∠2 = 117°; б) 1, 2, 4, если ∠3 = 43°27'.
- 65 Найдите неразвернутые углы, образованные при пересечении двух прямых, если: а) сумма двух из них равна 114°; б) сумма трех углов равна 220°.
- 66 На рисунке 41 найдите углы 1, 2, 3, 4, если: a) ∠2 +∠4 = 220°; б) 3(∠1 +∠3) = ∠2 +∠4; в) ∠2-∠1 = 30°.
- 67 На рисунке 47 изображены три прямые, пересекающиеся в точке О. Найдите сумму углов: ∠1+∠2+∠3.
- 68 На рисунке 48 ∠AOB = 50°, ∠FOE = 70°. Найдите углы АОС, BOD, СОЕ и COD.
- 69 Прямая а пересекает стороны угла А в точках Р и Q. Могут ли обе прямые АР и AQ быть перпендикулярными к прямой а?
- 70 Через точку А, не лежащую на прямой а, проведены три прямые, пересекающие прямую а. Докажите, что по крайней мере две из них не перпендикулярны к прямой а.
- 71 Отметьте четыре точки так, чтобы никакие три не лежали на одной прямой. Через каждую пару точек проведите прямую. Сколько получилось прямых?
- 72 Даны четыре прямые, каждые две из которых пересекаются. Сколько точек пересечения имеют эти прямые, если через каждую точку пересечения проходят только две прямые?
- 73 Сколько неразвернутых углов образуется при пересечении трех прямых, проходящих через одну точку?
- 74 Точка N лежит на отрезке МР. Расстояние между точками М и Р равно 24 см, а расстояние между точками N и M в два раза больше расстояния между точками N и Р. Найдите расстояние: а) между точками N и Р; б) между точками N и М.
- 75 Три точки К, L, М лежат на одной прямой, KL = 6 см, LM= 10 см. Каким может быть расстояние КМ? Для каждого из возможных случаев сделайте чертеж.
- 76 Отрезок АВ длины а разделен точками Р и Q на три отрезка АР, PQ и QB так, что АР = 2PQ = 2QB. Найдите расстояние между: а) точкой А и серединой отрезка QB; б) серединами отрезков АР и QB.
- 77 Отрезок длины т разделен: а) на три равные части; б) на пять равных частей. Найдите расстояние между серединами крайних частей.
- 78 Отрезок в 36 см разделен на четыре не равные друг другу части. Расстояние между серединами крайних частей равно 30 см. Найдите расстояние между серединами средних частей.
- 79* Точки А, В и С лежат на одной прямой, точки М и N — середины отрезков АВ и АС. Докажите, что ВС = 2MN.
- 80 Известно, что ∠AOB = 35°, ∠BOC = 50°. Найдите угол АОС. Для каждого из возможных случаев сделайте чертеж с помощью линейки и транспортира.
- 81 Угол hk равен 120°, а угол hm равен 150°. Найдите угол km. Для каждого из возможных случаев сделайте чертеж.
- 82 Найдите смежные углы, если: а) один из них на 45° больше другого; б) их разность равна 35°.
- 83 Найдите угол, образованный биссектрисами двух смежных углов.
- 84 Докажите, что биссектрисы вертикальных углов лежат на одной прямой.
- 85* Докажите, что если биссектрисы углов ABC и CBD перпендикулярны, то точки A, B и D лежат на одной прямой.
- 86 Даны две пересекающиеся прямые а и b и точка А, не лежащая на этих прямых. Через точку А проведены прямые m и n так, что m⊥a, n⊥b. Докажите, что прямые m и n не совпадают.
Комментарии