№ 24*. Дан треугольник ABC, CD — медиана, проведенная к стороне AB. Докажите, что если AC > BC, то угол ACD меньше угла BCD.

Источник:

Домашняя работа по геометрии за 9 класс к учебнику «Геометрия. 7-9 класс» А.В.Погорелов Решебник по геометрии за 9 класс (А.В.Погорелов, 2001 год),
задача №24
к главе «§12. РЕШЕНИЕ ТРЕУГОЛЬНИКОВ».

Все задачи >

Продолжим медиану CD и отложим на ней отрезок DE = CD; полученный четырехугольник ACBЕ — параллелограмм. BE = AC и CB = AЕ.


В ΔACЕ ∠ACD лежит против стороны AЕ = CB. B ΔCBЕ ∠BCD лежит против стороны BE = AC. Так как AC > BC, то ∠ACD < ∠BCD. Что и требовалось доказать.

Наверх