№ 25*. Докажите, что биссектриса треугольника не меньше высоты и не больше медианы, проведенных из этой же вершины.

Источник:

Домашняя работа по геометрии за 9 класс к учебнику «Геометрия. 7-9 класс» А.В.Погорелов Решебник по геометрии за 9 класс (А.В.Погорелов, 2001 год),
задача №25
к главе «§12. РЕШЕНИЕ ТРЕУГОЛЬНИКОВ».

Все задачи >

Пусть в ΔABC, AK — высота, AN — биссектриса ∠A, AE — медиана.


Из точки A к прямой BC проведены перпендикуляр AK (высота) и две наклонные. Cледовательно точка N принадлежит либо KB, либо KE.

Точка N совпадает с K, тогда AN = AK < AE.

Точка N совпадает с E, тогда AN = AE > AK.

Точка N лежит между точками K и E, тогда AK < AN < AE (так как ее проекция NK меньше EK — проекции AE).

По доказанному в задаче № 24, AN не может быть больше AE, т.е. точка N не может лежать между E и С Что и требовалось доказать.

Наверх