Т.к. ВМ — медиана равнобедренного треугольника, то она является и высотой и биссектрисой. Таким образом, ∠AMD = ∠DMC = 90°, ∠ABD = ∠DBC,
1) В ΔABD и ΔDBC: АВ = ВС (т.к. ΔАВС равнобедренный), BD — общая.
∠ABD = ∠DBC (т.к. ВМ — биссектриса). Таким образом, ΔABD = ΔDBC по 1-му признаку равенства треугольников.
2) В ΔADM и ΔMDC:
АМ = МС (т.к. ВМ — медиана)
DM — общая ∠AMD = ∠DMC = 90о Таким образом, ΔADM = ΔMDC по 2-м катетам, что и требовалось доказать.
Источник:
Решебник
по
геометрии
за 7 класс (А.В. Погорелов, 2001 год),
задача №24
к главе «§ 3. Признаки равенства треугольников».
Комментарии