Прямая ВВ1 пересекает сторону АС в точке В1, следовательно, точки А и С располагаются в разных полуплоскостях относительно прямой ВВ1. Две прямые не могут иметь двух точек пересечения, следовательно, отрезок А 1С не пересекает прямую ВВ1, и точки А 1 и С лежат в одной полуплоскости относительно прямой ВВ1.
Так как точки А1 и С расположены в одной полуплоскости, а точки А и С — в разных полуплоскостях относительно прямой ВВ1, то точки А и А1 расположены в разных полуплоскостях, и следовательно отрезок АА1 пересекает прямую ВВ1.
Рассмотрим положение точек относительно прямой АА1. Точки В и С лежат в разных полуплоскостях, а точки В1 и С — в одной полуплоскости относительно прямой АА1. Значит, точки В и B1 лежат в разных полуплоскостях относительно прямой AA1 и следовательно отрезок ВВ1 пересекает прямую АА1.
Точка пересечения прямых АА1 и ВВ1 лежит и на отрезке АА1, и на отрезке ВВ1, следовательно, эти отрезки пересекаются. Что
и требовалось доказать.
Решебник
по
геометрии
за 7 класс (А.В. Погорелов, 2001 год),
задача №47
к главе «§ 1. Основные свойства простейших геометрических фигур».