Проведем через прямые а и b плоскость α. Она пересечет плоскость в по прямой b1, перпендикулярной прямой а. Так как b1 лежит в β. В плоскости α прямые b и b1 должны совпадать как две перпендикулярные к прямой a прямые, проходящие через одну точку. Значит прямая b лежит в плоскости β, что и требовалось доказать.
Источник:
Решебник
по
геометрии
за 10 класс (А.В. Погорелов, 2001 год),
задача №10
к главе «§17. Перпендикулярность прямых и плоскостей».
Комментарии