21. Докажите, что геометрическое место середины отрезков с концами на двух скрещивающихся прямых есть плоскость, параллельная этим прямым.

Пусть середина отрезка AB - точка M, где A и B принадлежат скрещивающимся прямым a и b. Проведем через прямые a и b параллельные плоскости α и β, а через точку M проведем плоскость γ параллельно плоскостям α и β. Тогда все рассматриваемые середины отрезков принадлежат плоскости γ Что и требовалось доказать.

Комментарии