Из условия следует, что можно разбить наши шесть прямых на две тройки; пусть прямые 1, 2 пересекаются в точке O1, прямые 4, 5 и 6 в точке О2, а прямые 6 и 1 пересекаются в точке О3. По условию через точку О3 должна проходить еще хотя бы одна прямая, кроме прямых 6 и 1, это возможно только если все три точки O1, O2 и O3 совпадают. Предположим противное, тогда через точку О3 проходит хотя бы одна из прямых 2, 3, 4 или 5, что невозможно, поскольку через две точки O1 и O2 или O2 и O3 на плоскости можно провести только одну прямую, или какие-то прямые совпадают, что противоречит условию, значит, наше предположение неверно, и все шесть прямых проходят через одну точку.
Решебник
по
геометрии
за 7 класс (Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина, 2012 год),
задача №326
к главе «Задачи повышенной трудности. Задачи к главе I».