№ 50*. Проведите общую касательную к двум данным окружностям.

Сначала построим окружность с центром О1 и радиусом R1 - R2. Из центра О2 второй окружности проводим касательную к этой окружности (задача № 49). Касательная касается этой окружности в точке K.

Продлим O1K до пересечения с окружностью с центром О1 и радиусом R1. Прямая O1K пересечет эту окружность в точке М. Теперь проводим касательную из точки М к окружности с центром О2 и радиусом R2. Таким образом, MN — первая касательная, т.к. MN ⊥ ОМ, O2N ⊥ MN, следовательно, MN — общая касательная.

Затем строим окружность с центром в точке О1 и радиусом R1 + R2 и проводим касательную к ней О2Р. О1Н = R1 принадлежит О1Р. Из точки Н проведем касательную HL к окружности с центром О2 и радиусом R2, таким образом, HL — вторая касательная, т.к. HL ⊥ O2L и HL ⊥ О1Н, следовательно, HL — общая касательная.

Рассмотрим всевозможные варианты:

1) Если центр одной окружности лежит внутри другой и они не пересекаются, то касательную провести нельзя.

2) Если центр одной окружности лежит внутри другой и они касаются в одной точке, то одна касательная.

3) Если они пересекаются в двух точках, то две касательные.

4) Если единственная точка пересечения лежит между их центрами, то три касательные.

5) Если R1 + R2 < О1О2, то четыре касательных.

6) Если R1 = R2 и О2 совпадает с О1, то бесконечное число касательных.

Комментарии