Начните вводить часть условия (например, могут ли, чему равен или найти):
Задачи повышенной трудности. Задачи к главе XIV
- 1304 Все плоские углы тетраэдра ОABC при вершине О — прямые. Докажите, что квадрат площади треугольника ABC равен сумме квадратов площадей остальных граней (пространственная теорема Пифагора).
- 1305 Докажите, что сечением куба может быть правильный треугольник, квадрат, правильный шестиугольник.
- 1306 Комната имеет форму куба. Паук, сидящий в середине ребра, хочет, двигаясь по кратчайшему пути, поймать муху, сидящую в одной из самых удаленных от него вершин куба. Как должен двигаться паук?
- 1307 Докажите, что в кубе можно вырезать сквозное отверстие, через которое можно протащить куб таких же размеров.
- 1308 Плоскости АВ1С1 и А1ВС разбивают правильную треугольную призму АВСА1В1С1 на четыре части. Найдите объемы этих частей, если объем призмы равен V.
- 1309 Докажите, что плоскость, проходящая через ребро и середину противоположного ребра тетраэдра, разделяет его на две части, объемы которых равны.
- 1310 Правильная четырехугольная пирамида со стороной основания а и плоским углом а при вершине вращается вокруг прямой, проходящей через вершину параллельно стороне основания. Найдите объем полученного тела.
Комментарии