282 Прямые а и b параллельны. Докажите, что середины всех отрезков XY, где Х∈а, Y∈b, лежат на прямой, параллельной прямым а и b и равноудаленной от этих прямых.

Источник:

Решебник по геометрии за 7 класс к учебнику Геометрия. 7-9 класс Л.С.Атанасян и др. Решебник по геометрии за 7 класс (Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина, 2012 год),
задача №282
к главе «Глава IV. Соотношения между сторонами и углами треугольника. §4 Построение треугольника по трем элементам».

Все задачи >

Рассмотрим

∠1 = ∠2 (вертикальные). Значит ΔOO1Y и ΔOO2У по гипотенузе и острому углу. Следовательно ОО1 = OO2, О - равноудалена от а и b, значит она лежит на прямой с || а || b (см. предыдущую задачу).

Наверх