266 На сторонах угла О отмечены точки А и B так, что ОА=ОB. Через эти точки проведены прямые, перпендикулярные к сторонам угла и пересекающиеся в точке С. Докажите, что луч ОС — биссектриса угла О.

Источник:

Решебник по геометрии за 7 класс к учебнику Геометрия. 7-9 класс Л.С.Атанасян и др. Решебник по геометрии за 7 класс (Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина, 2012 год),
задача №266
к главе «Глава IV. Соотношения между сторонами и углами треугольника. §3 Прямоугольные треугольники».

Все задачи >

Рассмотрим ΔOBC и ΔOAC.

Сторона ОС - общая, ОА = ОВ. Значит ΔOBC = ΔOAC (по катету и гипотенузе), следовательно ∠1 = ∠2 и ОС - биссектриса, ч.т.д.

Наверх