53. Из вершины прямого угла С треугольника АВС восставлен перпендикуляр CD к плоскости треугольника. Найдите расстояние от точки D до гипотенузы треугольника, если АВ= а, ВС=Ь, CD= с.

Источник:

Домашняя работа по геометрии за 10 класс к учебнику «Геометрия. 10-11 класс» А.В. Погорелов Решебник по геометрии за 10 класс (А.В. Погорелов, 2001 год),
задача №53
к главе «§17. Перпендикулярность прямых и плоскостей».

Все задачи >

Пусть CD - перпендикуляр к плоскости треугольника, а CK ⊥ АВ (высота треугольника).

Тогда по теореме о трех перпендикулярах DK ⊥ АВ. То есть DK - искомое расстояние. Далее

Так что

Далее в ΔCDK:

Наверх