47. Расстояние от данной точки до плоскости треугольника равно 1,1 м, а до каждой из его сторон — 6,1 м. Найдите радиус окружности, вписанной в этот треугольник.

Источник:

Домашняя работа по геометрии за 10 класс к учебнику «Геометрия. 10-11 класс» А.В. Погорелов Решебник по геометрии за 10 класс (А.В. Погорелов, 2001 год),
задача №47
к главе «§17. Перпендикулярность прямых и плоскостей».

Все задачи >

Пусть S — данная точка, и SO - перпендикуляр.Тогда SO = 1,1 м, расстояние от данной точки до плоскости треугольника. SB, SC, SA — наклонные; перпендикуляры к сторонам треугольника. Тогда АО = ВО = СО как проекции равных наклонных. По теореме о трех перпендикулярах АО, ВО, СO перпендикулярны сторонам треугольника. Значит O - центр вписанной окружности в треугольник и r = AO = OB = OC.

По теореме Пифагора в треугольнике SOB:

Наверх