46. К плоскости треугольника из центра вписанной в него окружности радиуса 0,7 м восстановлен перпендикуляр длиной 2,4 м. Найдите расстояние от конца этого перпендикуляра до сторон треугольника.

Источник:

Домашняя работа по геометрии за 10 класс к учебнику «Геометрия. 10-11 класс» А.В. Погорелов Решебник по геометрии за 10 класс (А.В. Погорелов, 2001 год),
задача №46
к главе «§17. Перпендикулярность прямых и плоскостей».

Все задачи >

Пусть O -центр вписанной окружности, а OS - данный перпендикуляр. Тогда r = АО = ОВ = ОС = 0,7 м., где точки А,В,С — точки касания сторон треугольника с окружностью. По теореме о трех перпендикулярах SA ⊥ MN. Тогда по теореме Пифагора в ΔAOS:

Наверх